
Enabling the Immersive Era of Computing

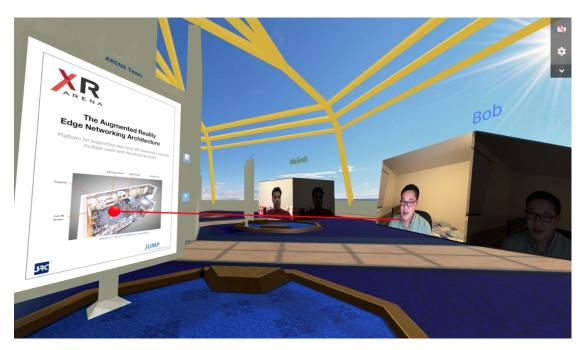
Sarita Adve

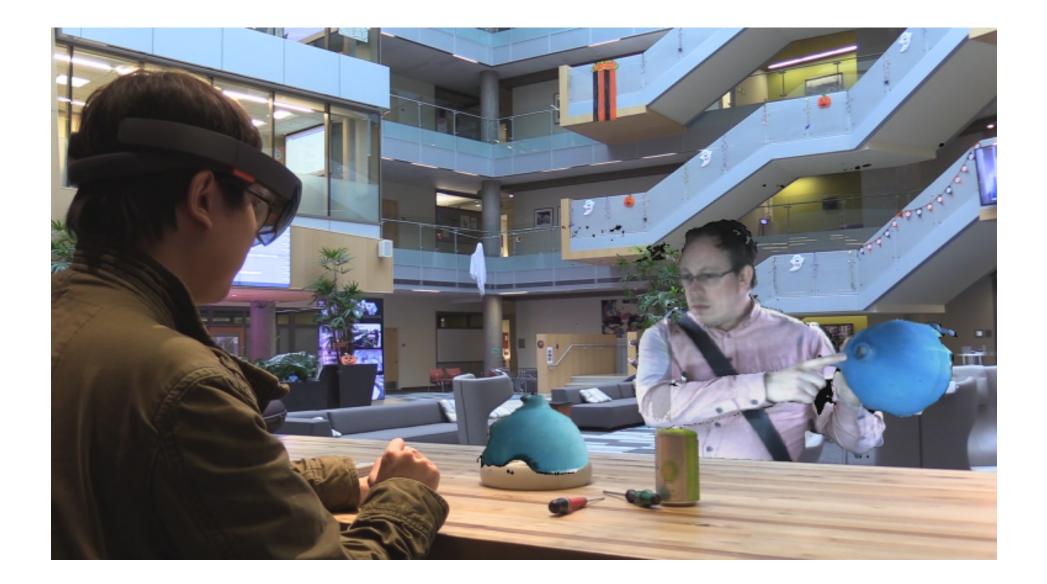
University of Illinois at Urbana-Champaign sadve@illinois.edu

illixr.org

w/ many collaborators acknowledged on slides

This work is supported in part by the Applications Driving Architecture (ADA) center (JUMP center co-sponsored by SRC & DARPA), the DARPA DSSOC program, and the National Science Foundation



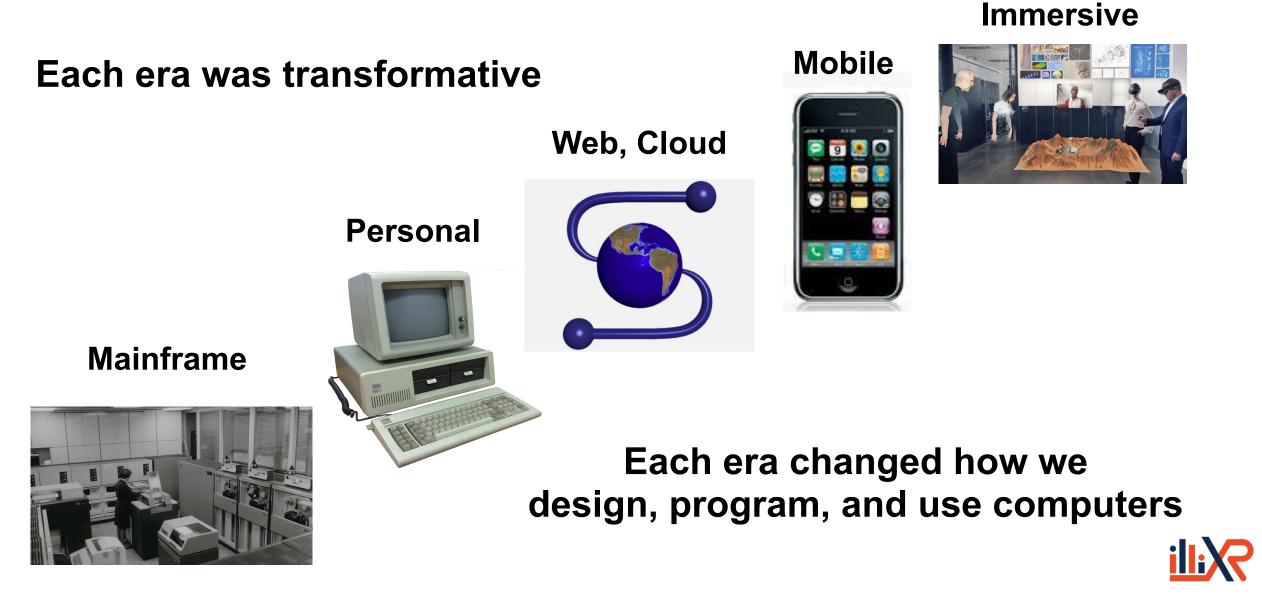


Meta avatars on Unity

ARENA [Rowe, CMU]

Immersive Computing =

Seamless integration of the physical and the virtual Real time, mobile, comfortable all day


Virtual, augmented, mixed reality (VR, AR, MR) \rightarrow Extended reality (XR) Metaverse, digital twins, spatial computing, ...

Will transform most human activities

New Era of Computing

Immersive Computing =

Seamless integration of the physical and the virtual Real time, mobile, comfortable all day

Hardware, software, applications ecosystem

Sensors, displays, headsets, wearables, edge and cloud backends, networking

A broad systems problem

Immersive Computing for Architects

Orders of magnitude gap in power, performance, quality-of-experience between current and desired systems

Approximate	Current	Desired
Res (Mpixels)	7	200
Power (W)	~7	0.1
Weight (g)	500	10

Huzaifa et al., Micro Top Picks'22

A A A

XR Systems: Challenges

Orders of magnitude gap

Power, performance, quality-of-experience (QoE)

Diverse expertise

Graphics, vision, audio, video, optics, haptics, ...

Cross-layer system co-design

Hardware, compiler, OS, algorithm. Device, edge, cloud

Approximate	Current	Desired
Res (Mpixels)	7	200
Power (W)	~7	0.1
Weight (g)	500	10

Complex metrics

Multiple, user-driven, end-to-end QoE metrics

Closed systems, few participants

No open reference systems or benchmarks

Large barrier to entry for open R&D

How can we democratize XR systems research, development, benchmarking?

ILLIXR: Illinois Extended Reality Testbed

ILLIXR: Open-source full system XR testbed

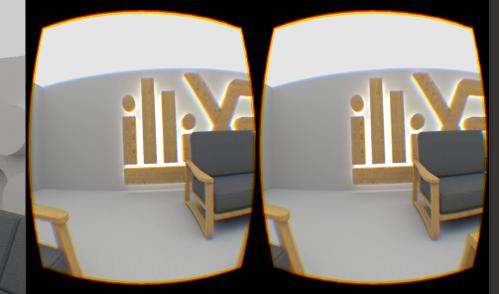
State-of-the-art XR components w/ modular runtime

OpenXR compatible

Extensive characterization and use for research

illixr.org

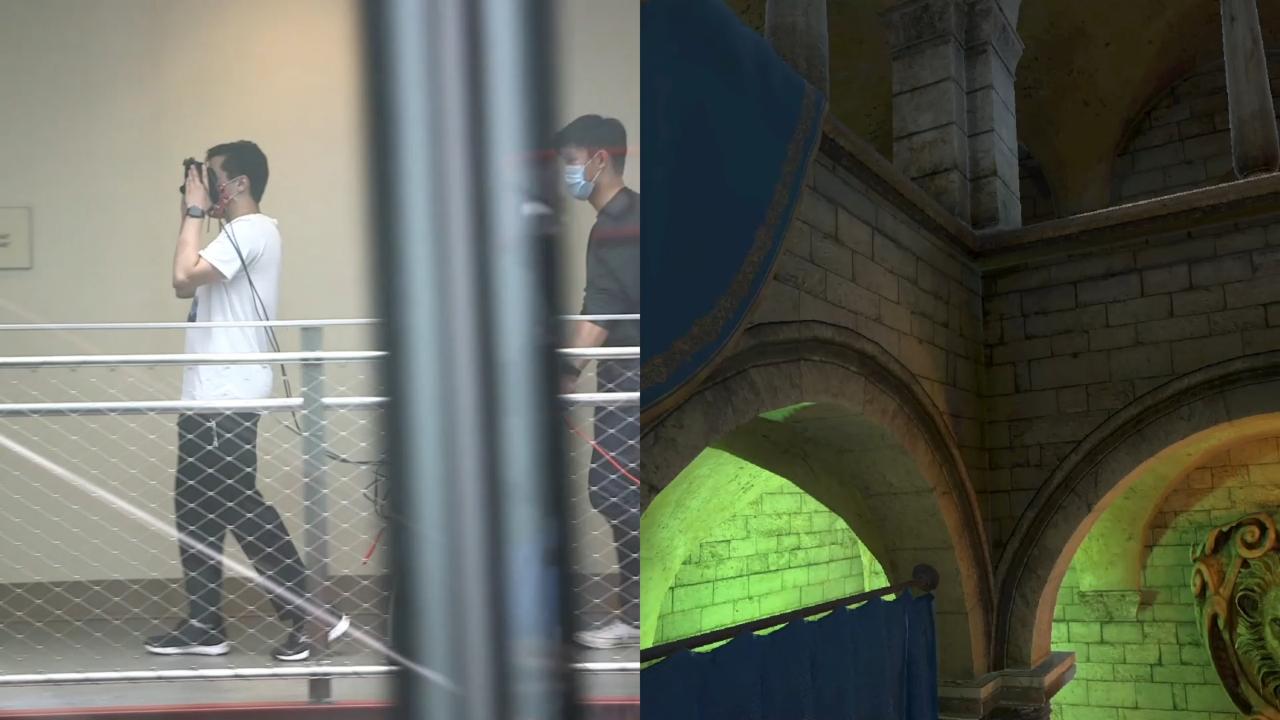
Huzaifa et al., IISWC'21 best paper, IEEE Micro Top Picks'22



ILLIXR Debug View

▼ Camera + IMU

Camera view buffers: Camera8: (672, 376) GL texture handle: 6 Camera1: (672, 376) GL texture handle: 7

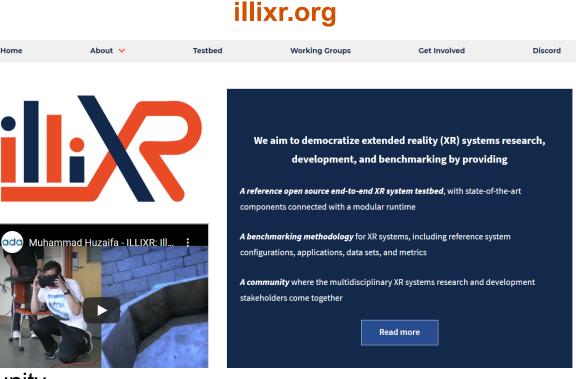


✓ ILLIXR Debug View
 Adjust options for the runtime debug view.
 ✓ Headset visualization options
 ✓ Follow headset position

 ▲ (146
 View distance
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (166
 ▲ (167
 ▲ (166
 ▲ (166
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167
 ▲ (167

iverse universe ut tracking universe itter 662572) itter • Onboard camera views

•0


ILLIXR Consortium

ILLIXR Consortium w/ industry + academic partners

• Arm, Facebook, Micron, North Star, NVIDIA, ...

Goals

- Reference open source testbed
 - Components and interfaces
 - Modular, extensible runtime
 - Telemetry
- Benchmarking methodology
 - Applications, data sets
 - System configurations
 - Metrics
- Build XR systems research and development community

Now funded by NSF CISE community research infrastructure progam *Join us: illixr@cs.illinois.edu, illixr.org, discord, weekly meetings*

ILLIXR Deep Dive

Team ILLIXR

ILLIXR students and developers

- Madhuparna Bhowmik
- Henry Che
- Rishi Desai
- Steven Gao
- Samuel Grayson
- Qinjun Jiang
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee
- Jeffrey Liu

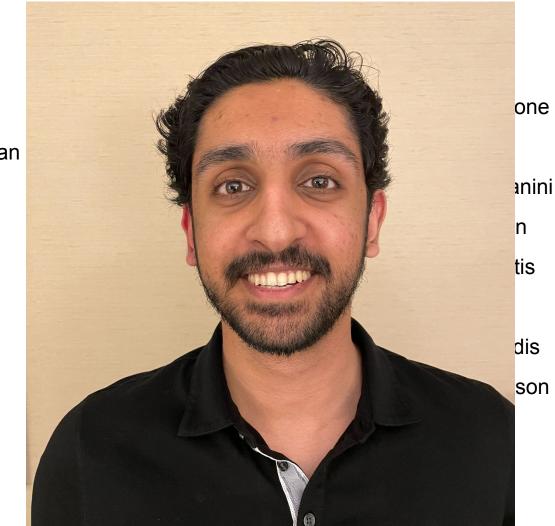
- Fang Lu
- Yihan Pang
- Joseph Ravichandran
- Giordano Salvador
- Bill Sherman
- Finn Sinclair
- Rahul Singh
- Boyuan Tian
- Lauren Wagner
- Henghzi Yuan
- Jeffrey Zhang

Consultations

- Ameen Akeel
- Wei Cui
- Aleksandra Faust
- Liang Gao
- Rod Hooker
- Matt Horsnell
- Amit Jindal
- Steve LaValle
- Steve Lovegrove

- David Luebke
- Andrew Maimone
- Vegard Oye
- Maurizio Paganini
- Martin Persson
- Archontis Politis
- Eric Shaffer
- Paris Smaragdis
- Chris Widdowson

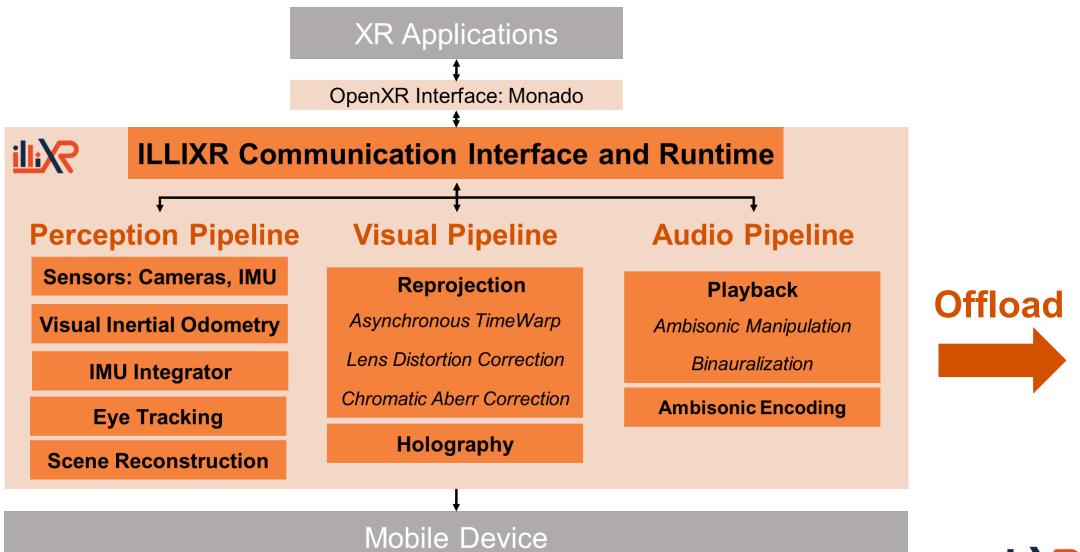
Founding consortium members: Arm, Meta Reality Labs, Micron, NVIDIA Founding sponsor: ADA research center, a DARPA/SRC JUMP center



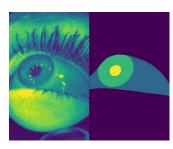
Team ILLIXR

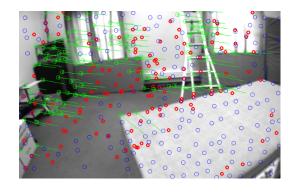
ILLIXR students and developers

- Madhuparna Bhowmik
- Henry Che
- Rishi Desai
- Steven Gao
- Samuel Grayson
- Qinjun Jiang
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee
- Jeffrey Liu


- Fang Lu
 - Yihan Pang
 - Joseph Ravichandran
 - Giordano Salvador
 - Bill Sherman
 - Finn Sinclair
 - Rahul Singh
 - Boyuan Tian
 - Lauren Wagner
 - Henghzi Yuan
 - Jeffrey Zhang

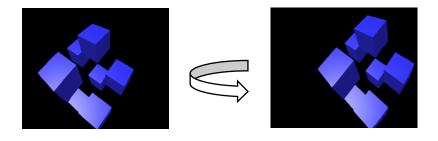
Founding consortium members: Arm, Meta Reality Labs, Micron, NVIDIA Founding sponsor: ADA research center, a DARPA/SRC JUMP center

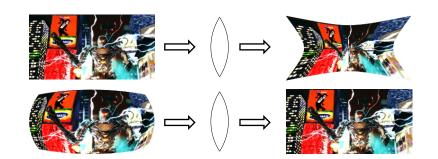



ILLIXR Overview

Perception Pipeline

- Sensors: Camera, Inertial Measurement Unit (IMU)
- Visual Intertial Odometry (VIO)
 - Provides position and head orientation (pose)
- IMU Integrator
 - Provides high frequency pose estimates
- Pose Predictor
 - Extrapolates pose to future timestamp
- Scene Reconstruction
 - Uses RGB-Depth camera to build dense 3D map of world
- Eye Tracking





Visual Pipeline

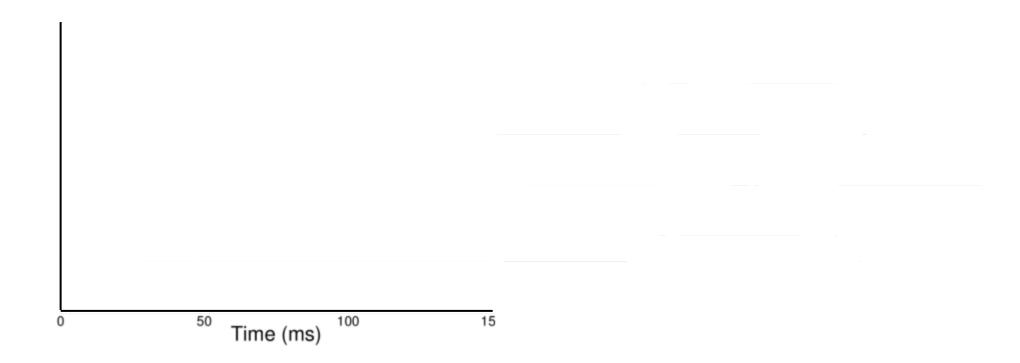
- Asynchronous reprojection
 - Warp rendered frame to account for head movement during rendering
 - Uses latest pose estimate and prediction
 - Cuts motion-to-photon latency

- Lens distortion and chromatic aberration correction
 - Corrects for distortion due to curved lenses

- Computational holography
 - Vergence-accommodation conflict (VAC): eyes focused at fixed point, converge at different points
 - Computational displays w/ multiple focal planes can fix VAC: compute per-pixel phase shift

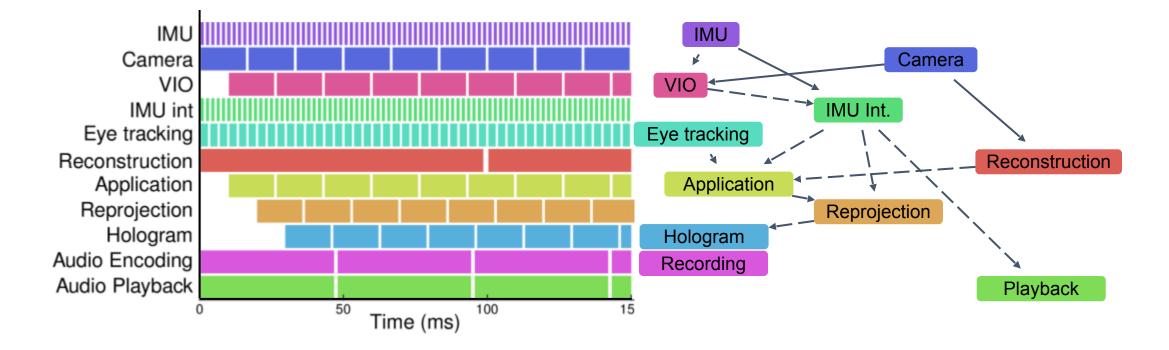
Audio Pipeline

- Audio encoding
 - Encodes multiple sound sources into Higher Order Ambisonics (HOA) soundfield
- Playback
 - Rotates and zooms HOA sound field for user's latest pose
 - Performs binauralization to account for user's ear, head, nose

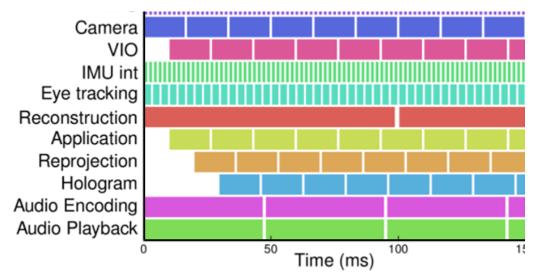


BUT XR is not just a collection of components

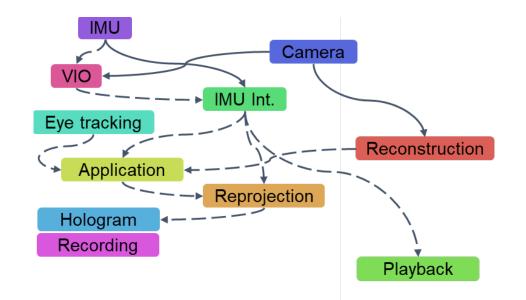
It is a SYSTEM



XR System Dataflow


XR System Dataflow

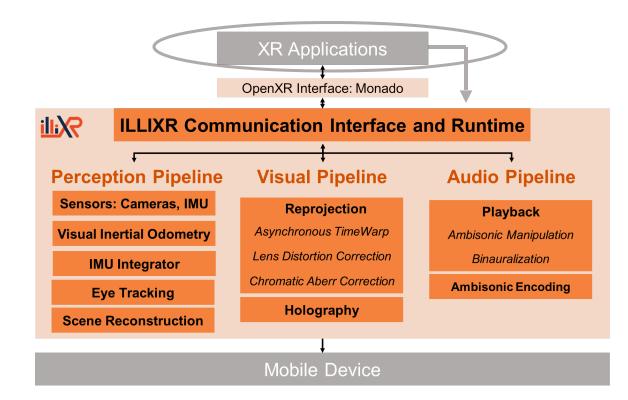
Different components at different frequencies Multiple interacting pipelines Synchronous and asynchronous dependences Multiple quality of experience metrics



ILLIXR Runtime

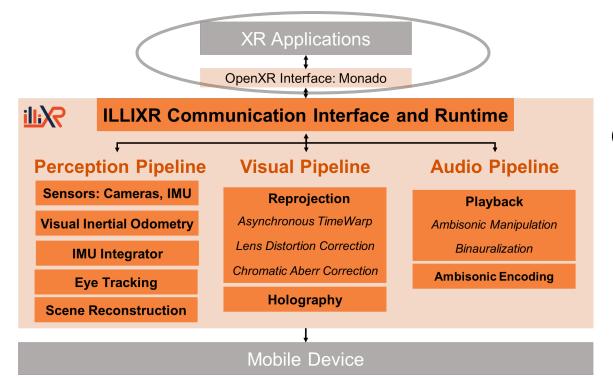
Modular, flexible architecture

ILLIXR components are plugins Separately compiled, dynamically loaded Easily swap/add new components, implementations


Efficient, flexible communication interface

Component specifies event streams to publish, subscribe Synchronous or asynchronous consumers Copy-free, shared memory implementation

End-to-end system balances flexibility with efficiency


ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR supports OpenXR applications

- Uses Monado implementation of OpenXR
- Today: Godot game engine
- Soon: Unity, Unreal development platforms

End-to-End Quality Metrics

- Motion-to-photon latency
 - Time from head motion to display (currently w/o display latency)
 - Target: < 20ms for VR, < 5ms for AR/MR
- Image quality: SSIM and FLIP
- + Extensive telemetry: Frame rates, missed frames, time distributions, power, ...

ILLIXR Components Today

	Component	Algorithm	Implementation
	Camera Camera	ZED SDK Intel RealSense SDK	C++ C++
	IMU IMU	ZED SDK Intel RealSense SDK	C++ C++
Perce ption	VIO VIO	OpenVINS Kimera-VIO	C++ C++
Pipeli ne	IMU Integrator IMU Integrator	RK4 GTSAM	C++ C++
	Eye Tracking	RITnet	Python, CUDA
	Scene Reconstruction Scene Reconstruction	ElasticFusion KinectFusion	C++, CUDA, GLSL C++, CUDA
	Reprojection	VP-matrix reproject w/ pose	C++, GLSL
Visual Pipeli	Lens Distortion	Mesh-based radial distortion	C++, GLSL
ne	Chromatic Aberration	Mesh-based radial distortion	C++, GLSL
	Adaptive Display	Weighted Gerchberg-Saxton	CUDA
Audio	Audio Encoding	Ambisonic encoding	C++
Pipeli ne	Audio Playback	Ambisonic manipulation, binauralization	C++

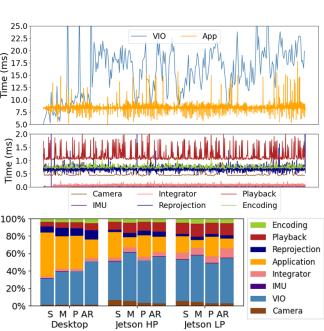
ILLIXR Findings

Evaluation Methodology

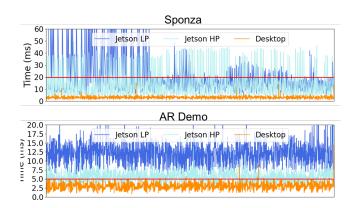
Component	Parameter	Range	Tuned	Deadline
Camera (VIO)	Frame rate Resolution Exposure	15 – 100 Hz VGA – 2K 0.2 – 20 ms	15 Hz VGA 1 ms	66.7 ms – –
IMU (Integrator)	Frame rate	≤ 800 Hz	500 Hz	2 ms
Display (Visual pipeline + Application)	Frame rate Resolution Field-of-view	30 – 144 Hz ≤ 2K ≤ 180°	120 Hz 2K 90°	8.33 ms – –
Audio (Encoding + Playback)	Frame rate Block size	48 – 96 Hz 256 – 1024	48 Hz 1024	20.8 ms –

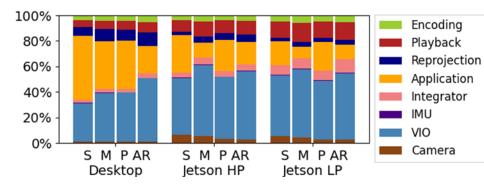
- Platforms
 - High-end desktop machine

High

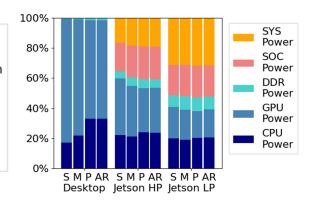

- Embedded: NVIDIA Jetson-HP (high performance) and Jetson-LP (low power)
- Applications: Sponza, Materials, Platformer, AR Demo on Godot game engine

Graphics intensity

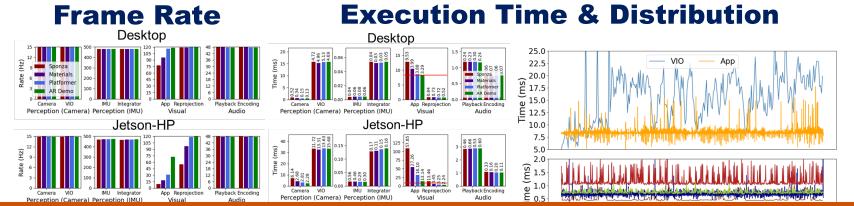

Results Summary

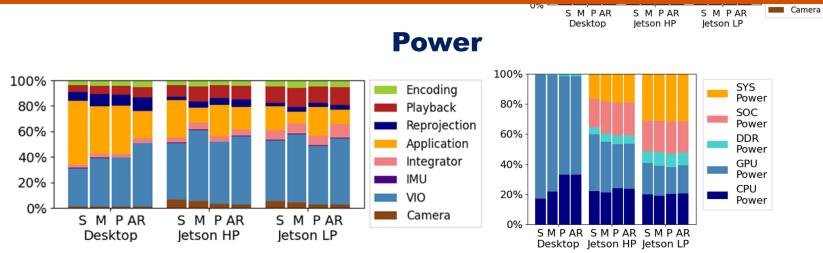

Quality of Experience

Application	Desktop	Jetson-HP	Jetson-LP
Sponza	3.1 ± 1.1	13.5 ± 10.7	19.3 ± 14.5
Materials	3.1 ± 1.0	7.7 ± 2.7	16.4 ± 4.9
Platformer	3.0 ± 0.9	6.0 ± 1.9	11.3 ± 4.7
AR Demo	3.0 ± 0.9	5.6 ± 1.4	12.0 ± 3.4



Platform	SSIM	1-FLIP
Desktop	0.83 ± 0.04	0.86 ± 0.05
Jetson-HP	0.80 ± 0.05	0.85 ± 0.05
Jetson-LP	0.68 ± 0.09	0.65 ± 0.17


Power


Results Summary

Quality of Experience

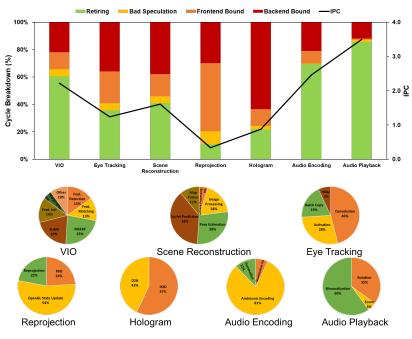
Application	Desktop	Jetson-HP	Jetson-LP
Sponza	3.1 ± 1.1	13.5 ± 10.7	19.3 ± 14.5
Materials	3.1 ± 1.0	7.7 ± 2.7	16.4 ± 4.9
Platformer	3.0 ± 0.9	6.0 ± 1.9	11.3 ± 4.7
AR Demo	3.0 ± 0.9	5.6 ± 1.4	12.0 ± 3.4

First published performance/power/QoE results for end-to-end XR system

17.5	1.1	1	— Jetson LP — Jetson HP — Desktop
15.0	d de la	della M	tal anna suan as interna indenna da sua sua sua na sua sua sua sua indina, antera suba na inditata da a da sua
12.5			
10.0	ll a li	1. Al 1	a fa bha bha bha a bha a bha ann an tha ann an tha bha ann an bhailte an ann an bhailte ann ann an ann ann an a
7.5	110	71 P	v se
5.0			en der sin eine her der der der der sin eine seine der der der sin eine der der der der der der der der der de
2.5	1	171	
0.0			

Platform	SSIM	1-FLIP
Desktop	0.83 ± 0.04	0.86 ± 0.05
Jetson-HP	0.80 ± 0.05	0.85 ± 0.05
Jetson-LP	0.68 ± 0.09	0.65 ± 0.17

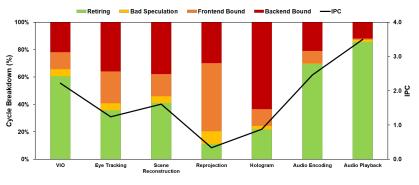
Results Summary and Implications for System Designers


- Substantial performance, power, QoE gap
 - ⇒ Need to specialize hardware, software, system
- No application component dominates all metrics
 - ⇒ Must consider all application components in *system* together
- Power consumption goes beyond CPU, GPU, DDR
 - \Rightarrow Must consider *system*-level hardware components; e.g., display and I/O
- Significant variability
 - ⇒ Need to partition, allocate, and schedule *system* resources
- Per-component metrics do not capture QoE
 - ⇒ Must look at entire system to make QoE-driven tradeoffs

Results Summary and Implications for System Designers

- Need to specialize hardware, software, system
- Must consider all application components in system together
- Must consider system-level hardware components; e.g., display and I/O
- Need to partition, allocate, and schedule system resources
- Must look at entire system to make QoE-driven tradeoffs
- Abundance of tasks and no single task dominates
 - ⇒ Need *automated* techniques to determine what to accelerate
- Impractical to build accelerator for every task
 - ⇒ Must build *shared* hardware
- Diversity of compute and memory primitives
 - \Rightarrow *Flexible* on-chip memory hierarchy
 - \Rightarrow *Flexible* accelerator communication interface
- Algorithms in flux
 - ⇒ Must design *programmable* hardware
- Different algorithms have different QoE vs. resource usage profiles
 ⇒ End-to-end QoE driven approximate computing

Standalone Components

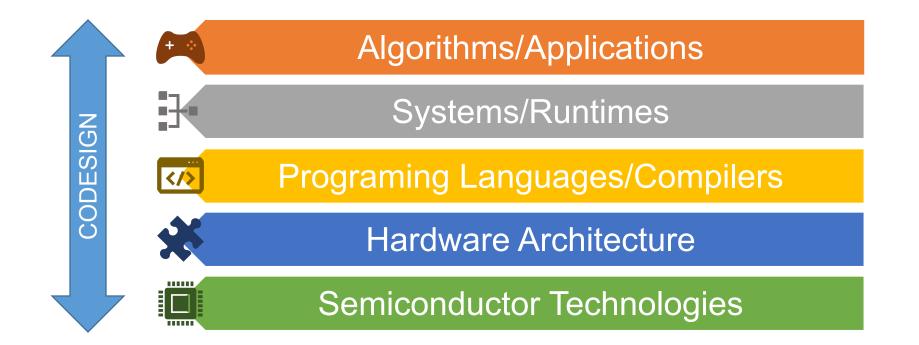


Task	Time	Computz	tion	Memory Patter	n			Task		Computa				y Pattern	
Feature detection Detects new features in the new camera images	15%	Integer ste pyramid le	stencils per each Locally dense stencil; globally mix dense and sparse		cil; globally mixed			Camera Processing Processes incoming camera depth image	5%	Bilateral fi rejection			lmage	equential accesses (
Feature matching Matches features across images Filter	s 13% Integer stencils; GEMM; inear algebra 62% Gauss-Newton refinement;		Locally dense stencil: globally mixed dense and sparse; mixed dense and random feature map accesses Mixed dense and sparse feature map				Image Processing Pre-processes RGB-D image for tracking and mapping	18%	Generation normal ma intensity; i undistortio transforma	op, and in image in; pose	age		dense; local stene from RGB.RGB → .BB		
Estimates 6DOF pose using earners and IMU measurements		linear algo		and filter matrix accesses				Pose Estimation Estimates 6DOF pose	28%	ICP; phote	P: photometric error: Photometric error is globally den others are globally sparse, locally dense				
Other Miscellaneous tasks Task		me Comp		Memory F	Memory Pattern			Surfel Prediction Calculates active surfels in current frame	38%	Vertex and	i fragmen	t shaders	ders Globally sparse; locally dense		nse
FBO FBO state management OpenGL State Update		24% Framebuffer bind and clear Driver calls: CPU-GPU communication 54% OpenGL state undates: one Driver calls: CPU-GPU						Map Fusion Updates map with new surfel information	11%	Vertex and	i fragmen	t shaders	Globally	sparse; locally de	ner
Sets up OpenGL state drawcall per eye communication						Task		Time C	Comput	ation		Memory	Pattern		
Reprojection Applies reprojection transformation to image	Applies reprojection MULs/vertex fragment				iform, vertex, and iffers; 3 texture gment			Normalization INT16 to FP32		7% E	Slement-	wise FP32	t divisio	on Dense ro	w-major
Task		Time	Computation		Memory Patte	ern		Encoding Sample to soundfield		81% Y	[j][i] =	$D \times X[j]$		Dense co	lumn-major
Hologram-to-depth		57%	Transcendenta		Dense row-majo			mapping							
Propagates pixel phase to depth plane			TB-wide tree i	eduction	pixel data; temporal lo data; reduction in scra			Summation HOA soundfield summati	on	11% ¥	'[i][j]+ :	$= X_k[i][j]$	$\forall k$	Dense ro	w-major
Sum Sums phase differ from hologram-to-dept		< 0.1%	Tree reduction		Dense row-majo scratchpad	a; redu	action in		3	kels lotation omdicki rotat	Time 35%	Psychoacou	ntie	Computation FFT: frequency do- main convolution:	Memory Pattern Batterly pattern for FFT/IFFT; dense raw-ma
Depth-to-hologram Propagates depth plane phase to pixel		43%	Transcendenta thread-local re		Dense row-major; n pixels written once		pixel reads;			dag pase		Apples fo domain filte HOA rotot Batates virts rols	ion al chan-	IFFT Transendentals: FMADDs	sequential accesses for convulution Sparse column-major accesses; some temporal locality
									5	eem omdfeld ze sing pose	525 mm			Linear algebra	Dense column-major sequential accesses
										Insurolizatio RTF opplication				Identical to psychoa- romatic filter	Identical to psychoneous filter

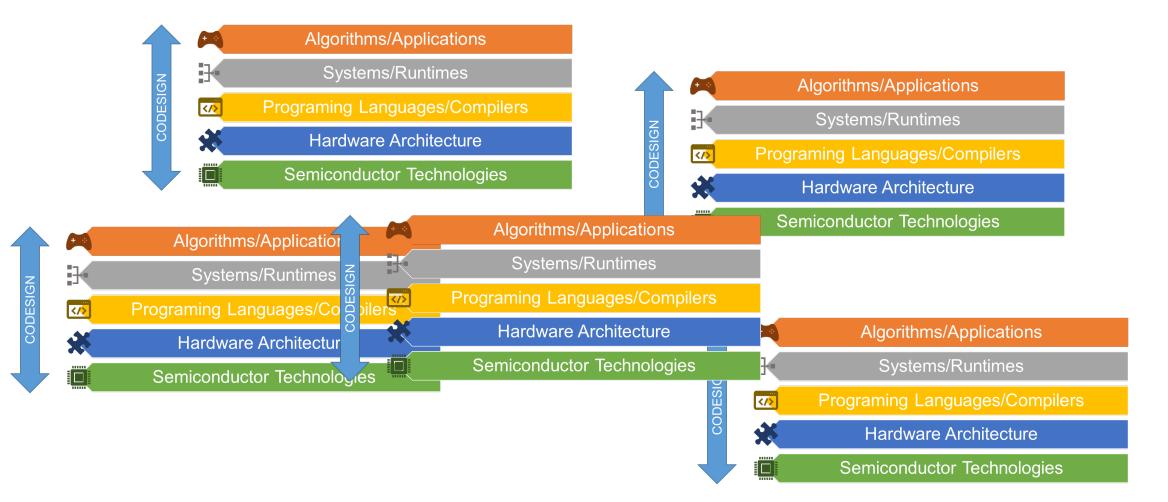
Results Summary and Implications for System Designers

- Need to specialize hardware, software, system
- Must consider all application components in system together
- Must consider system-level hardware components; e.g., display and I/O
- Need to partition, allocate, and schedule system resources
- Must look at entire system to make QoE-driven tradeoffs
- Abundance of tasks and no single task dominates
 - ⇒ Need *automated* techniques to determine what to accelerate

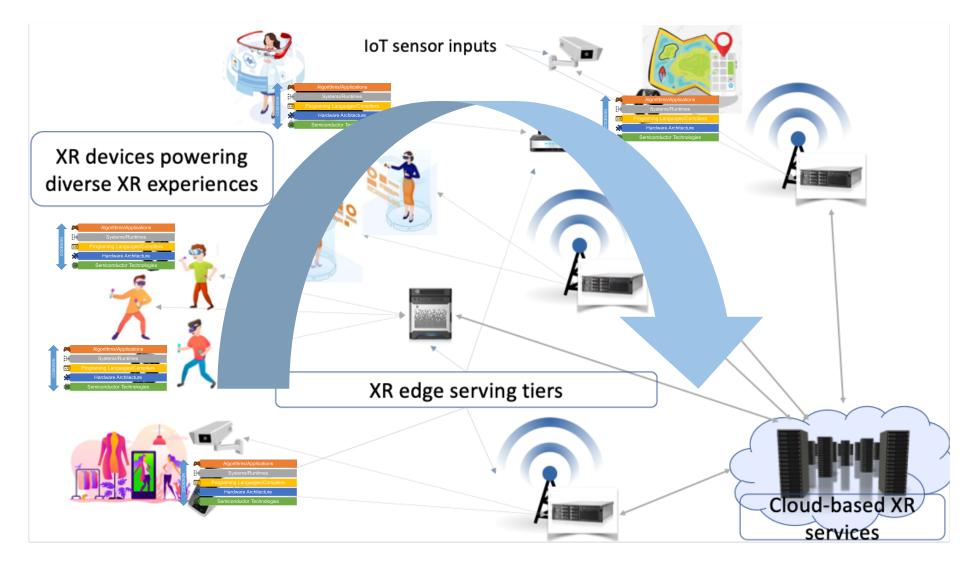
Standalone Components


ILLIXR = Rich playground for systems research

- Diversity of compute and memory primitives
 - \Rightarrow *Flexible* on-chip memory hierarchy
 - \Rightarrow *Flexible* accelerator communication interface
- Algorithms in flux
 - ⇒ Must design *programmable* hardware
- Different algorithms have different QoE vs. resource usage profiles
 - ⇒ End-to-end QoE driven *approximate computing*

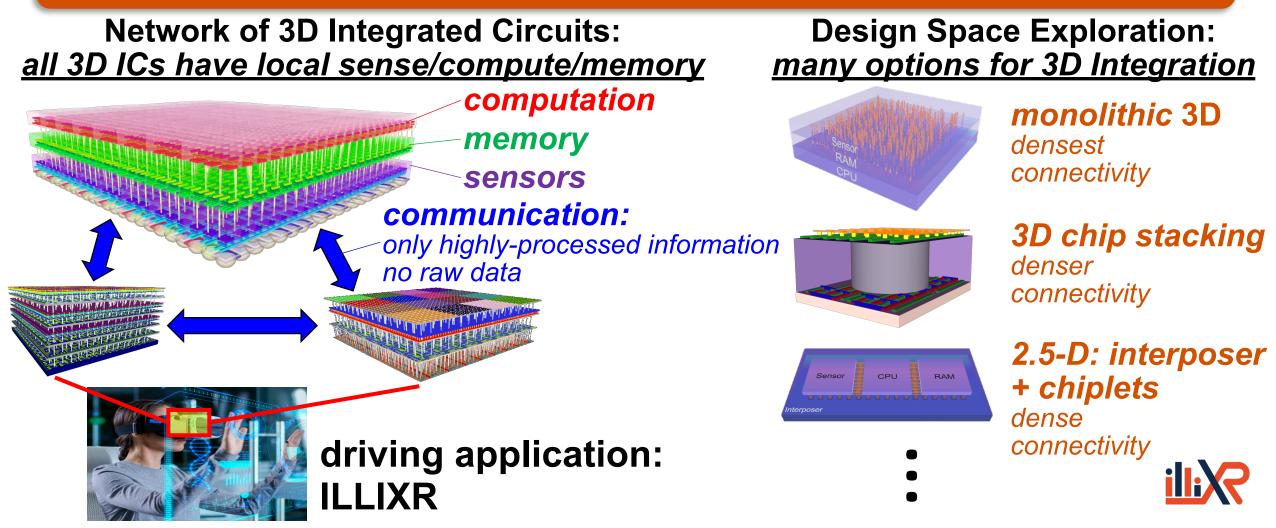


Task	Computz	tion	Memory Pattern				Task	Time	0	
Feature detection Detects new features in the new camera images	ture detection 15% exts new features in the			Locally dense stencil; globally mixed dense and sparse				Camera Processing Processes incoming camera depth image	5%	B
Feature matching Matches features across images	Integer ste linear alge	ncils; GEMM; bra	Locally dense ster dense and sparse; random feature m				Image Processing Pre-processes RGB-D image for tracking and mapping	18%	Gin	
Filter Estimates 6DOF pose using camera and IMU measurements			vton refinement; iposition; GEMM; bra	Mixed dense and and filter matrix	parse feature map accesses			Pose Estimation Estimates 6DOF pose	28%	tr K gr
Other Miscellaneous tasks Task		Gaussian	filter; histogram	Globally dense sto Memory I				Surfel Prediction Calculates active surfels in current frame	38%	Ve
FBO FBO state management	24%		buffer bind and cle	communica	ion			Map Fusion Updates map with new surfel information	11%	Vé
			3L state updates; o all per eye	CPU-GPU ion			Task		т	
Reprojection Applies reprojection transformation to image	MULs/vertex fragm			ccesses uniform, vertex, and gment buffers; 3 texture cesses/fragment			Normalization INT16 to FP32		7	
Task		Time Computation			Memory Pattern			Encoding Sample to soundfield		8
Hologram-to-depth Propagates pixel phase to depth plane		57%	Transcendenta		Dense row-major; spati			mapping		
		TB-wide tree reduction pixel data; temporal locality in depth data; reduction in scratchpad						Summation HOA soundfield summation		
Sum Sums phase differences from hologram-to-depth		< 0.1%	Tree reduction	Dense row-major; reduction in scratchpad				1	Task Reta	
Depth-to-hologram Propagates depth plane phase to pixel	43% Transcendentals; FMADD thread-local reduction			Dense row-major; no pixel reads; pixels written once					plag	
									5	Zeces iceas: ninz



Distributed system figure from Gavrilovska

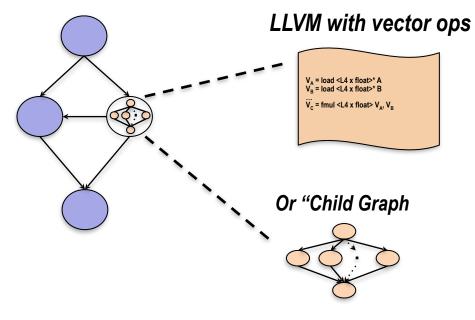
End-to-end QoE-driven, full system codesign


Research with ILLIXR

3D-Integrated Sense/Compute/Memory/Communication for XR

w/ D. Brooks, G. Hills

Enables ultra-low latency "sense-to-processed information" architectures + alleviates data communication bottlenecks



Representing Heterogeneous Parallelism in Software

w/V. Adve and S. Misailovic

HPVM: Heterogeneous Parallel Virtual Machine [PPoPP18, OOPSLA19, PPOPP21]

Compiler IR and Hardware Virtual ISA

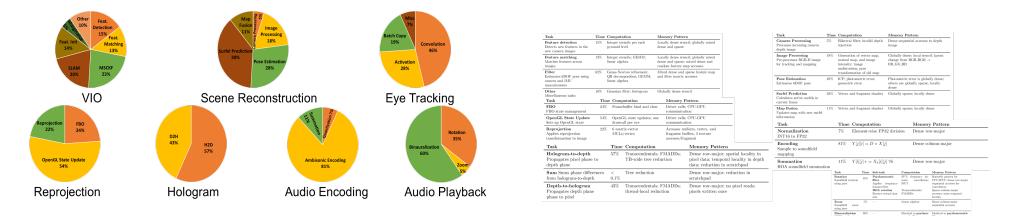
Representing ILLIXR in HPVM

Model: Hierarchical dataflow graph with side effects Captures

- coarse grain task parallelism
- streams, pipelined parallelism
- nested parallelism
- SPMD-style data parallelism
- fine grain vector parallelism

& data communication

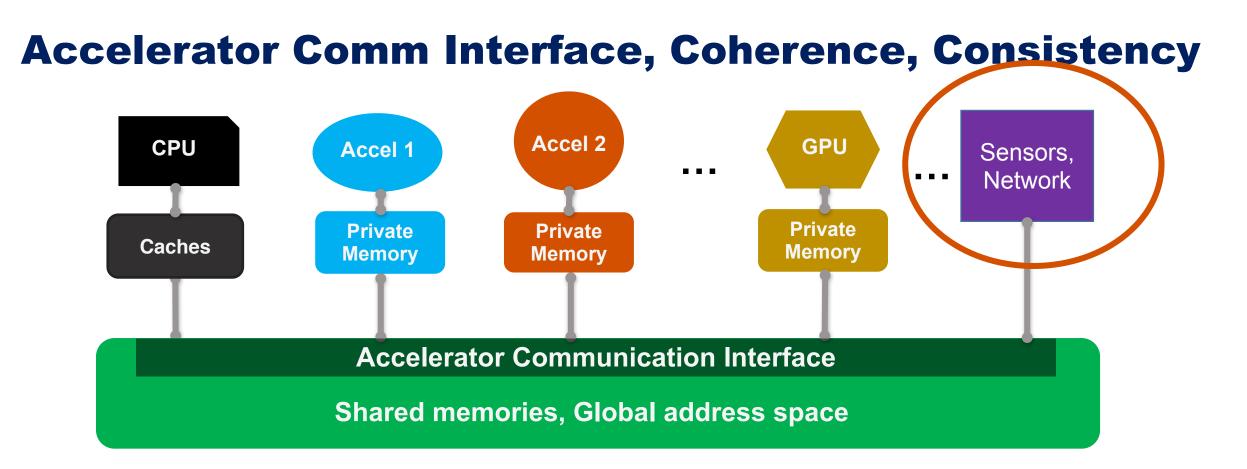
Supports high-level optimizations as graph transformations


Targets: CPUs, vector extensions, GPUs, FPGAs, domain specific accelerators [so far, SoC; now distributed system]

For code generation, automated accelerator selection, approximation, resource mapping, distributed systems, ...

Automated Selection, Generation of Accelerator HW & SW

w/ V. Adve, D. Brooks, V. Reddi, G.-Y. Wei

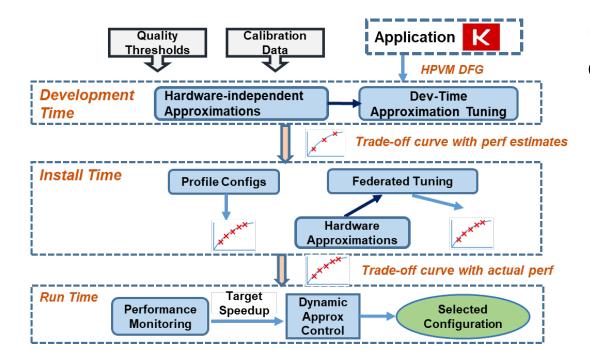

Manual identification of common compute, memory patterns

⇒ Cross-component co-design allows hardware, computation, and data reuse w/ large benefits

Automated design space exploration to identify profitable acceleration, generate HW+SW

- Use HPVM's parallelism representation
- Recent results for automated design space exploration w/ loop, task, streaming parallelism
 - ~2X better performance for same area vs. using sequential LLVM representation [in review]
- Ongoing: Compiler analysis and transformations for common patterns and optimizations, code generation, resource mapping

- How should heterogeneous parallel accelerators, sensors, network i/f, ... communicate w/ each other?
- Programmable, shared hardware \Rightarrow shared memory
 - Coherence, consistency, communication
 - Build on Spandex heterogeneous coherence interface for coherence specialization [ISCA18, TACO'22]



Automated Approximation Selection

w/ V. Adve and S. Misailovic

ApproxTuner [PPoPP21]

Combines multiple software and hardware approximations for tensor operations

Uses predictive models to compose accuracy impact of multiple approximations

3-phase approximation tuning

- Development-time preserves hardware portability via ApproxHPVM IR
- Install-time allows hardware-specific approximations
- Run-time allows dynamic approximation tuning

Approximations for ILLIXR

Build on ApproxTuner for QoE-driven automated selection

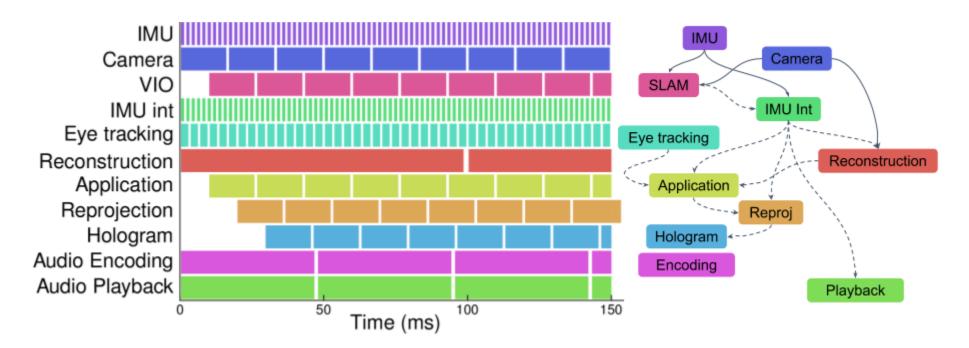
End-to-End Cross-Component Co-Design

Scene reconstruction

- Co-design with other upstream and downstream components
- Co-design Hardware + System software + Algorithm
- So far 69X better energy/frame w/ only SW (vs. InfiniTAM)
- Hardware accelerator in progress
- Eye tracked foveated rendering (w/ NVIDIA)
 - How to trade off accuracy among components?

Disciplined end-to-end accuracy driven approximation w/ Aprox

- Foveated video image quality metrics

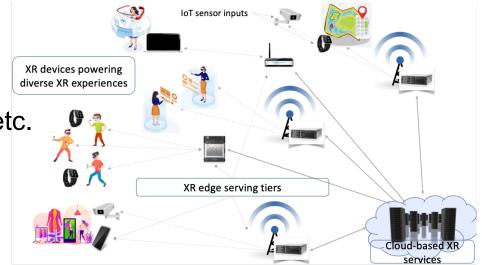


QoE-Driven Scheduling

w/ P. B. Godfrey, R. Mittal

ILLIXR task graph is a DAG with multiple critical paths and QoE constraints

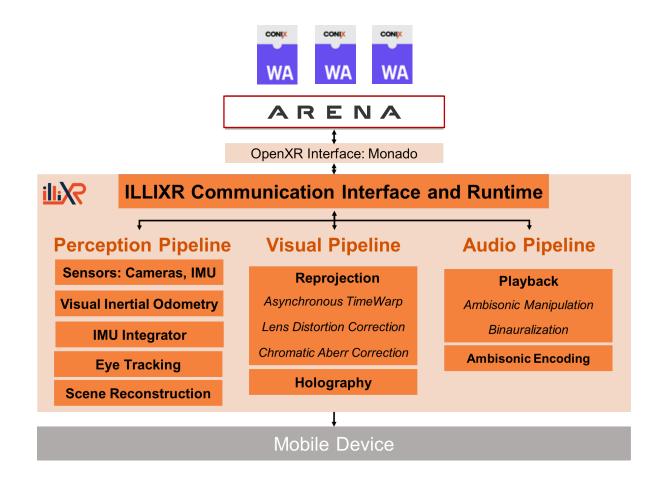
Scheduler goal: Determine frame rates and schedule to meet QoE for given hardware mapping Preliminary results: Lower MTP than Linux baseline on single core CPU


Ongoing: Multiple hardware targets for given task, hardware and software approximations

Offloading to Remote Servers

w/A. Gavrilovska, Godfrey, Hassanieh, Intel

- Offloading computation to remote compute
 - Recent support in ILLIXR
 - What to offload, when, where?
 - Depends on compression, transmission energy, etc.
 - Integrate with scheduler
 - Impact of network
 - Intel's Wireless Time Sensitive Networking
 - mmWave
 - Impact on accelerator design, algorithm, scheduler

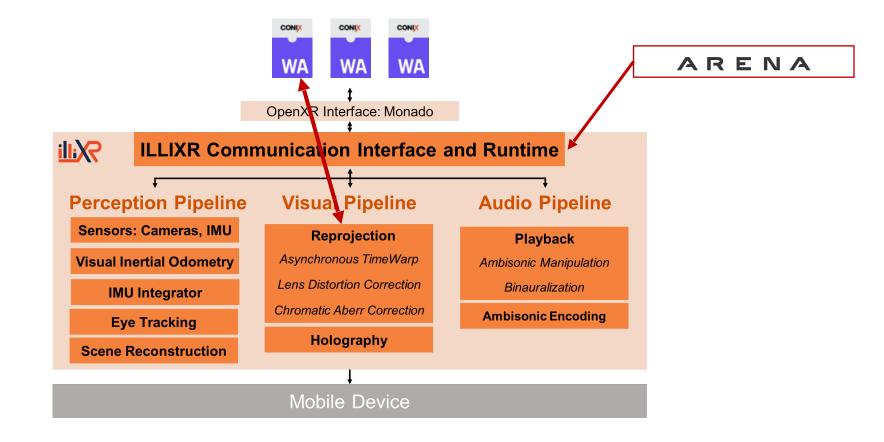


Multi-User Immersive Systems

w/A. Gavrilovska, Nahrstedt, Rowe

Multiuser XR experiences

- Devices, edge, cloud distributed computing
- Step 1: ILLIXR + CMU's ARENA for distributed services



Multi-User Immersive Systems

w/A. Gavrilovska, Nahrstedt, Rowe

Multiuser XR experiences

- Devices, edge, cloud distributed computing
- Step 1: ILLIXR + CMU's ARENA for distributed services

And More

- Eye tracking + Holograms [Sivasubramanium et al., Micro'21]
- Security and Privacy
- 360 Video streaming
- Multiparty AR programming stack
- Displays

•

- On-sensor computing
- QoE metrics
- XR algorithms

A New Immersive Era

Will transform how we design, program, and use computers

We need new style of research

End-to-end QoE-driven, full system codesign

Build systems

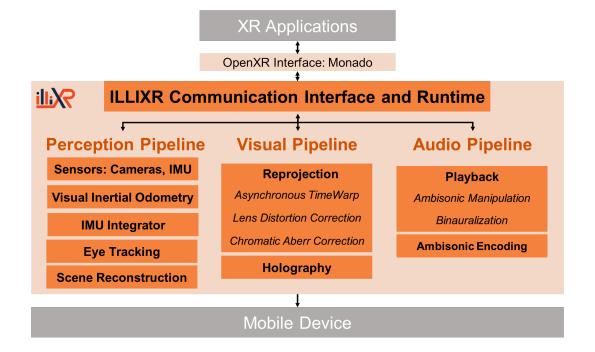
Chips, compilers, runtimes, apps

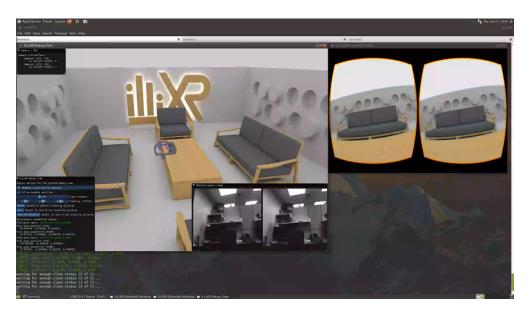
User studies

Large teams

We need new style of reviewing

ILLIXR paper rejected four times from top conferences


We need new style of funding


We were fortunate to be part of the DARPA/SRC funded ADA center, DARPA DSSOC project IBM/Pradip Bose + 3 univs, (recently) NSF CISE Community Research Infrastructure

ILLIXR: Illinois Extended Reality Testbed

ILLIXR is a rich playground for immersive systems research Consortium for immersive systems research, development, and benchmarking *Join us: illixr@cs.illinois.edu, illixr.org, discord, open meetings on Wed@11a CT*

