
HPVM: Hardware-Agnostic
Programming for
Heterogeneous Parallel
Systems

Adel Ejjeh
Aaron Councilman
Akash Kothari
Maria Kotsifakou∗

Leon Medvinsky
Abdul Rafae Noor
Hashim Sharif
Yifan Zhao
Sarita Adve
Sasa Misailovic
Vikram Adve

{aejjeh,aaronjc4,akashk4,leonkm2,arnoor2,hsharif3,yifanz16,sadve,misailo,vadve}@illinois.edu
University of Illinois at Urbana-Champaign
Computer Science
Urbana, IL

∗maria.kotsifakou@runtimeverification.com
Runtime Verification, Inc.
Champaign, IL

Abstract—We present Heterogeneous Parallel Virtual Machine, or HPVM, a compiler framework
for hardware-agnostic programming on heterogeneous compute platforms. HPVM introduces a
hardware-agnostic parallel Intermediate Representation (IR) with constructs for hierarchical task,
data, and pipeline parallelism, including dataflow parallelism, and supports multiple front-end
languages. Additionally, HPVM provides optimization passes that navigate performance, energy,
and accuracy tradeoffs, and includes retargetable back ends for a wide range of diverse
hardware targets including CPUs, GPUs, domain-specific accelerators, and FPGAs. Across
diverse hardware platforms, HPVM optimizations provide significant performance and energy
improvements, while preserving object code portability. With these capabilities, HPVM facilitates
developers, domain experts, and hardware vendors in programming modern heterogeneous
systems.

September/October 2022 -1

HPVM: Hardware-Agnostic Programming for
Heterogeneous Parallel Systems

WITH the slowdown of Moore’s Law and
the end of Dennard scaling, heterogeneous ar-
chitectures are increasingly dominating the sys-
tems used for modern applications. These sys-
tems have been evolving to include a plethora
of compute- and energy-efficient processing el-
ements (PEs), ranging from GPUs and FPGAs
to fixed-function and programmable domain-
specific accelerators. Enabling hardware-agnostic
programming of these heterogeneous systems is
important to facilitate their use by a broad range
of software developers. By hardware-agnostic,
we mean that the entire programming process,
including the software itself and the iterative
manual development and tuning processes, should
not be specific to a particular target system.
Moreover, any system-specific performance tun-
ing should be automated by the compilation flow
as much as possible, and if that is not entirely pos-
sible, the programming process should minimize
the need for changes to the application source
code.

Currently, programming such heterogeneous
devices presents many challenges, including the
need to use diverse hardware-specific program-
ming languages, poor source code portability,
lack of object-code portability which is essential
in certain domains such as mobile applications,
and the need for system-specific performance tun-
ing [1]. Moreover, in many emerging application
domains (e.g., video analytics, AR/VR, mobile
robotics, etc.), it is also crucial – but challenging
for application developers – to increase perfor-
mance and/or energy efficiency by sacrificing
small amounts of accuracy or application quality.

We believe that the solution to these chal-
lenges lies in a suitable compiler and auto-
tuning infrastructure, with the right abstractions
of parallelism, that allows seamless compila-
tion of hardware-agnostic code into multiple
general-purpose and/or specialized hardware tar-
gets. Additionally, the compiler must automati-
cally optimize programs using efficient hardware-

Figure 1: HPVM Compiler Infrastructure. General-purpose
applications use HeteroC++ and are compiled using graph
transformations and autotuning, and run using HPVM-
RT. Tensor-domain applications use Keras, PyTorch or
ONNX, compiled to the ApproxHPVM tensor IR extensions,
and optimized by ApproxTuner using static and dynamic
approximation-tuning.

level primitives and domain-specific transforma-
tions while requiring minimal source-code tun-
ing by the developer for performance. This can
be achieved by separating the hardware-agnostic
functional specification from the hardware-
specific tuning, which itself can be automated
using autotuning.

We present Heterogeneous Parallel Virtual
Machine (HPVM) [2], a compiler framework
that achieves the aforementioned goals. HPVM
addresses all the programming challenges by pro-
viding a compiler IR design and code-generation
framework that is retargetable to a wide range of
heterogeneous parallel architectures, hardware-
agnostic language front ends that support ease
of programming, and a domain- and hardware-
specific optimization framework that automati-
cally navigates performance, energy, and accu-
racy tradeoffs. HPVM’s flexibility allows pro-
grammers to easily write and optimize code for
heterogeneous platforms, while giving hardware
vendors the ability to easily extend the compiler

September/October 2022 1

infrastructure with new hardware back ends and
corresponding optimizations.

No existing infrastructure we know of pro-
vides the combination of features needed for
hardware-agnostic programming of a broad range
of accelerator-based systems, including a flexible
abstraction of parallelism, source- and object-
code portability, and the separation of function-
ality from (automatable) performance tuning and
accuracy-aware approximation tuning. Spatial [3]
is based on a valuable parallelism abstraction, but
emphasizes hardware design. TVM [4] supports
diverse hardware targets, but is narrowly focused
on machine learning. Perhaps the best alternative
is MLIR, which is flexible enough to support a
wide range of compiler goals and all missing
features could be added in future. At present,
it lacks a virtual object code format essential
for object code portability in accelerator-based
systems. It also lacks an approximation frame-
work (including diverse approximations, support
for approximation tuning and dynamic adaptation
of approximations), which is crucial for many
emerging applications on heterogeneous systems.
We believe it would be valuable to add new
“dialects” to MLIR based on the techniques de-
scribed here in order to provide these missing
capabilities.

HPVM Overview
HPVM is an open-source1 retargetable com-

piler infrastructure that uses a common abstrac-
tion of parallelism to define the compiler interme-
diate representation (IR), a virtual instruction set
architecture (ISA), and a runtime system. Figure 1
shows the HPVM compiler stack. HPVM’s paral-
lel abstraction is designed to capture the multiple
forms of parallelism available on heteregeneous
systems, in a hardware-agnostic manner.

The HPVM IR is currently built on top of
LLVM, i.e., it uses LLVM IR to represent (scalar
and vector) computations. HPVM is a modular
framework that facilitates compiler optimizations,
and benefits from the advanced optimization and
code-generation capabilities offered by LLVM.
Our ApproxHPVM [5] and ApproxTuner [6] ex-
tensions provide a tensor-domain programming
model and enable tradeoffs between accuracy

1https://gitlab.engr.illinois.edu/llvm/hpvm-release/

Figure 2: HPVM DFG Representation.

and performance/energy for tensor applications,
which we describe later. With that, HPVM pro-
vides a framework that can seamlessly integrate
domain-specific tensor code with general-purpose
code.

Starting with hardware-agnostic code written
in a supported language – at present, these in-
clude a parallel dialect of C++ (HeteroC++) for
general-purpose parallel code, and Keras, Py-
Torch, and ONNX for deep learning – HPVM’s
front ends translate the parallelism in the appli-
cation into equivalent code using HPVM’s paral-
lel IR abstractions. HPVM’s optimization frame-
works, which support the optimization needs of
different domains, tune the code for the target
system. Finally, code is generated for individ-
ual (specified or default) target devices and for
the host CPU to generate executable binaries,
leveraging existing LLVM code generators for
each device wherever possible. Optional features
enable design space exploration for FPGAs [7]
and GPUs, and an approximation autotuning and
dynamic adaptation framework for tensor pro-
grams.

HPVM Parallel Abstraction and IR
A parallel program is represented in HPVM as

a host program plus one or more acyclic dataflow
graphs (DFGs) (Figure 2). Each DFG is hierarchi-
cal: a node is either a leaf node representing a unit
of computation, or an internal node containing an
entire “child” dataflow graph. Edges in the DFG
represent explicit, logical data transfer between
nodes, with blocking semantics, i.e., the sink node
of an edge will block if it attempts to access the
data coming in via that edge. Leaf nodes can
include references to a global shared memory.
HPVM programs are assumed to be data race
free, i.e., explicit ordering through DFG edges
or fine-grain synchronization operations must be
used to enforce ordering or mutual exclusion

2 IEEE Micro

between conflicting accesses to the same shared
memory location.

Each node in a DFG has one or more dynamic
instances, represented using a dynamic replica-
tion factor (e.g. for the iterations of a parallel
loop). Node instances are assumed to be fully
independent, i.e., safe to run in parallel. At the
IR level, hints from the source program or front
end are used to specify which device a node must
be targeted to, although an automatic partitioning
system built on the autotuner described here will
allow automatic assignment of nodes to devices.

HPVM Compiler Internal Representation
The HPVM compiler IR is a direct imple-

mentation of the hierarchical graph representa-
tion, using LLVM IR for both the host program
and the node computations. Every HPVM node
is represented by an ordinary LLVM function.
The HPVM IR defines a set of LLVM “intrinsic
functions” to describe the details of the dataflow
graphs, as well as host operations to launch
a graph computation asynchronously, wait for
completion, and to transfer inputs and outputs to
and from a graph (either as one-time transfers
or as streams). An LLVM-to-DFG translation
pass converts the intrinsics-based description into
explicit graph data structures, before graph trans-
formations and back-end code generation occur.

HPVM leaf nodes use LLVM scalar and
vector instructions for individual computational
tasks, and can use LLVM atomics and other
synchronization operations to ensure data race
freedom. Just like with LLVM, an HPVM IR
program is a fully self-contained and executable
“virtual object code” program, which can be used
to achieve object code portability (via install-time
translation) for any targets that support portable
LLVM IR.

ApproxHPVM and Tensor Extensions
We extend the LLVM IR used by HPVM with

higher level tensor intrinsics such as matrix mul-
tiplication and convolution. This enables HPVM
to retain domain specific semantics for tensor
application domains such as deep learning and
image processing. We leverage these intrinsics
for three purposes: (a) domain specific optimiza-
tions, such as operator fusion; (b) code generation
targeting machine learning accelerators, such as

void* Section = __hetero_section_begin();
for(int i = 0; i < left_dim ; i++){

for(int j = 0; j < right_dim; j++){
__hetero_parallel_loop(
/* Num Parallel Enclosing Loops */ 2,
/* Num Input Objects */ 6,
Res, Res_Size, V1, V1_Size, V2, V2_Size,
left_dim, right_dim, common_dim,
/* Num Output Objects */ 1,
Res, Res_Size ,
/* Optional Node Name */ "matmul_parallel_loop");
__hetero_hint(/* TARGET DEVICE */ Target::GPU);
Res[i*right_dim + j] = 0;
for(int k = 0 ; k < common_dim; k ++){

// Res[i,j] += V1[i,k] + V2[k,j]
Res[i*right_dim + j] += V1[i*common_dim + k] * V2[k*right_dim +j];

}
}
__hetero_section_end(Section);

2 Dimensional Parallel Loops
corresponding 2D HPVM Node with

dynamic replication factor:
(left_dim x right_dim)

Source level annotation
specifying where to offload

computation

Specifying the incoming objects
(fat pointers or scalars) and the
outgoing objects (fat pointers or

scalars) for Parallel Loop

Figure 3: Matrix Multiply written in HeteroC++. The outer
two loops over i and j are parallel, whereas the innermost
loop executes sequentially over k. Note that a pointer and the
size of the allocated memory it points to together constitute
a single input/output object.

Movidius and NVDLA; and (c) accuracy-aware
optimizations for tensor operations, which apply
and tune software and hardware approximation
techniques on the tensor operators systematically
such that user-specified quality of service (QoS)
constraints are respected.

HPVM Front Ends
HeteroC++ Front End

HeteroC++ is an experimental parallel di-
alect of C/C++ that enables easy parallelization
using HPVM. Computations in HeteroC++ are
described as parallel tasks or parallel loops, which
are lowered to nodes in the HPVM DFG using
function outlining. The programmer annotates the
incoming and outgoing pointer variables for each
task or loop (Figure 3), which are used to infer the
edges between nodes. Importantly, HeteroC++ di-
rectives are completely hardware-agnostic, lack-
ing any target-specific design or tuning param-
eters. Through this programming interface, the
same high-level program in HeteroC++ can be
compiled for CPUs, GPUs, FPGAs and hardware
accelerators by generating target-agnostic HPVM
IR. HeteroC++ can be viewed as a small subset of
OpenMP, supporting flexible nested loop and task
parallelism and implicit offloading with “target
hints.” We are currently extending our autotuning
framework to automatically determine the target
device for a node given a target heterogeneous
system.

Deep Learning Front Ends
HPVM supports front ends for three popu-

lar neural network frameworks: Keras, PyTorch,

September/October 2022 3

and ONNX (a neural network exchange format).
These front ends compile high-level code written
in these frameworks to HPVM IR dataflow graphs
with tensor operations (convolutions, matrix mul-
tiplications etc.) in the leaf nodes, and tensor data
on the DFG edges.

HPVM Back End Code Generation
To generate code for the different target de-

vices, a bottom-up traversal of the DFG is per-
formed by each device back end, translating ev-
ery leaf node to device-specific code for one or
more devices using the following device-specific
translators, and generating host code as needed.
Standard LLVM CPU back ends for the x86,
ARM, and RISC-V families are used to generate
CPU code, both for the host program and to
compile DFG nodes targeted for the CPU.

GPU Back end
For every leaf node targeted to the GPU, the

GPU back end generates an OpenCL kernel in C,
replacing HPVM’s thread-indexing intrinsics with
OpenCL API calls. Additionally, the necessary
code to launch the kernel, set up its arguments,
and copy arguments to device memory is gener-
ated for the host program. The dynamic replica-
tion factor of the kernel’s leaf node determines
the OpenCL workgroup size.

FPGA Back End
The FPGA back end also performs OpenCL

code generation for the corresponding leaf nodes
in a similar manner to the GPU back end.
The OpenCL kernels are compiled using Intel
FPGA SDK for OpenCL to generate an FPGA
bitstream for Altera FPGAs. Intel recommends
using Single Work Item Kernels, so we added a
node sequentialization transformation to generate
sequential loops from the dynamic replication
factors of nodes. Finally, the back end uses sepa-
rate OpenCL command queues for each kernel to
support concurrent execution on the FPGA, and
OpenCL events are used to synchronize accord-
ingly. This is done by issuing the corresponding
calls to the HPVM Runtime.

Compiling to Fixed Function Accelerators
The HPVM fixed function accelerator back

end requires LLVM functions (e.g., generated

from C source code) representing the functional
semantics of each of the target accelerator’s oper-
ations. It looks for matches between application
leaf node functions and accelerator operations by
using a semantic matching scheme for LLVM
functions described in [8] based on program
dependence graph (PDG) isomorphism. When a
match is found, it replaces the leaf node func-
tion body with code to launch the corresponding
accelerator construct. This back end has been
used to generate code for FFT and Viterbi fixed
function accelerators.

Back Ends for Deep Learning Accelerators
NVDLA is NVIDIA’s programmable ac-

celerator for energy-efficient tensor operations
commonly-used in deep learning (convolutions,
matrix multiplication, relu, max pooling, etc.).
HPVM directly maps HPVM tensor IR operations
to NVDLA’s tensor IR constructs for operations
like relu, max pooling, etc. It fuses HPVM
IR operations such as convolution and tensor
add before mapping to NVDLA constructs. The
NVDLA IR is then compiled to object code by
the vendor NVDLA compiler. We support two
NVDLA modes: FP16 and INT8. For INT8, we
perform floating-point to integer quantization us-
ing Distiller, a third-party tool for neural network
quantization [9].

Intel Movidius VPU (Vision Processing Unit)
is a deep learning accelerator used on edge de-
vices like the Neural Compute Stick. Similar to
the NVDLA workflow, the HPVM-Movidius back
end translates HPVM’s DFG of tensor operations
to the Intel nGraph IR - a DFG-based IR with
tensor operations specific to the Movidius back
end. The HPVM-Movidius back end directly in-
vokes nGraph compiler interfaces (linked with
the HPVM toolchain), which apply hardware-
specific optimizations and generate object code.
These interfaces also insert code for offloading
the compute kernels to the Movidius accelerator.

ATen Back End
HPVM tensor operations can be translated

to high-performance libraries. We support com-
pilation to the ATen back end - the tensor li-
brary used by PyTorch for compiling to GPUs
(using cuDNN) and CPUs (using MKL-DNN).
This back end enables HPVM to map to efficient

4 IEEE Micro

approximate constructs supported by ATen, in-
cluding support for sparse tensor operations (used
in pruned neural networks) and quantized tensor
operations.

HPVM Optimization Frameworks
HPVM includes two code optimization frame-

works:

• a graph optimization framework that automat-
ically tunes an HPVM program for a specific
accelerator target; and

• an accuracy-aware optimization framework,
ApproxTuner, that uses approximation tech-
niques to gain performance and energy im-
provements.

Optimizations and Autotuning
The HPVM graph optimization framework in-

cludes both HPVM DFG graph optimizations and
regular LLVM optimizations on the node func-
tions. These optimizations are applied to HPVM
leaf nodes (i.e. kernels) singly or in pairs. They
include:

• Argument Privatization finds pointer argu-
ments that are marked as thread-private and
creates a local (private) copy of them.

• Loop Unrolling unrolls loops using a specified
unroll factor.

• Greedy Loop Fusion considers fusing all pairs
of LLVM loops in a single leaf-node function
that are legal to fuse, from the outermost
nesting level to the innermost.

• Node Fusion fuses DFG nodes that are con-
nected with an edge and have the same
dynamic replication factor and no fusion-
preventing dependencies.

HPVM’s optimization framework incorporates
autotuning using the HyperMapper design space
exploration framework [10] to automatically tune
hardware-agnostic programs for FPGA [7] and
GPU (separately for now) using the above op-
timizations. A performance model is used for
FPGA tuning to avoid long synthesis times, while
we use direct execution on the GPU for GPU
tuning. The autotuner selects which optimizations
will be applied and, for loop unrolling, what
unroll factor to use for each loop.

ApproxTuner
ApproxTuner is an end-to-end accuracy-aware

optimization framework for tensor-based compo-
nents of programs, such as deep neural networks
and image processing pipelines. ApproxTuner
takes a program compiled to HPVM IR and a
desired end-to-end quality (QoS) threshold, and
automatically maps tensor operations to different
approximations to maximize performance and/or
energy benefits while ensuring that the QoS is
achieved.

ApproxTuner uses a novel three-phase, pre-
dictive tuning strategy to map approximations
on diverse hardware and maintain object code
portability. To enable efficient tuning, Approx-
Tuner uses a predictive tuning approach, which
uses accuracy and performance prediction models
instead of expensive empirical evaluations.

At development-time, ApproxTuner tunes the
program with hardware-independent approxima-
tions, finding a number of configurations. A con-
figuration is a mapping from each tensor operator
to one or more approximations and parameter set-
tings for those approximations. Predictive tuning
is used to compute a Pareto-optimal frontier of
these configurations in the performance-accuracy
tradeoff space, and this Pareto curve is shipped
with the HPVM IR. At install-time, ApproxTuner
retunes these configurations with any hardware-
specific knobs that exist on the target hardware,
and refines the Pareto curve by measuring real
performance on the target hardware. The final
Pareto curve is shipped with the application bi-
nary and used by a dynamic tuner at run-time
(described later).

ApproxTuner supports software approxima-
tions such as reduction sampling (using a subset
of inputs in the reduction), perforated convolu-
tions, and sampled convolutions. At the hardware-
level, ApproxTuner supports reduced precision
using FP16 or INT8, and mapping to low-voltage
knobs on PROMISE, an experimental analog ML
accelerator [11].

Runtime Systems and Schedulers

HPVM Runtime
The HPVM Runtime (HPVM-RT) enables

programs compiled in HPVM to efficiently exe-
cute on a diverse range of hardware platforms.

September/October 2022 5

HPVM-RT provides a memory tracker which
maintains the location of the most recent dirty
copy of memory objects used across HPVM
DFGs, and uses that to determine when a memory
copy between host and device is necessary.Also,
HPVM-RT communicates with the corresponding
device runtimes (OpenCL runtime for GPU and
FPGA), creating the necessary OpenCL objects
(Platform, Context, Kernels, Command Queues),
copying memory back and forth, setting kernel
arguments, and launching kernels on the corre-
sponding devices.

ApproxTuner Runtime Approximation Tuning
ApproxTuner’s run-time approximation tuner

enables applications to maintain performance
goals under changing system or application con-
ditions, e.g., low-power modes. The tuner adapts
per-operation approximation knobs (described
earlier) to adapt the accuracy-performance trade-
off while using a system monitor to detect
system slowdowns. The tuner uses the Pareto
curves shipped with the HPVM program binary to
choose the most accurate approximation param-
eter settings that satisfy desired quality metrics.
These parameter settings are used as arguments
for the tensor operations on each invocation, mak-
ing it easy to change configurations quickly [6].

Third-party SoC Schedulers
HPVM includes support for two third-party

SoC schedulers as part of a collaborative project.
The first is the ESP system [12] from Columbia,
a hardware-design framework that enables easy
integration of new accelerators into SoC’s. ESP
is being used as part of the EPOCHS project
(led by IBM) to design an SoC specialized for
autonomous vehicles with several accelerators,
such as FFT, Viterbi, and NVDLA, and a RISC-
V host. This approach enables hardware-agnostic
programmability as well as potential accuracy-
aware optimization for SoCs designed using ESP.

The second is the novel EPOCHS scheduler
to schedule different application “tasks” onto the
available accelerators in an SoC, including static
and dynamic mappings. Our compiler targets the
scheduler library API to launch the “tasks” and
specify the possible target devices for each. These
HPVM back ends are easily extensible to other
similar SoC design and task scheduling frame-

works.

Experimental Evaluation
Because of space constraints, we focus on

results from recent work. In an early HPVM pub-
lication, we reported results for 7 Parboil bench-
marks, showing that the HPVM infrastructure
can compile the same hardware-agnostic code
for NVIDIA GPUs and Intel vector instructions
(AVX) and achieve performance competitive with
that of separately hand-tuned OpenCL code for
each target [2].

Below, we show experimentally that: (a) our
GPU autotuner achieves excellent speedups; (b)
a single, hardware-agnostic program can be par-
titioned for GPU and FPGA, achieving much
higher speedups than on GPU alone; (c) when
small reductions in end-to-end DNN inference
accuracy are tolerable, ApproxTuner can roughly
double the performance of a wide range of
DNNs [6] ; and (d) dynamic approximation tun-
ing enables a DNN to maintain image classi-
fication throughput despite a large reduction in
GPU clock frequency, with only a small loss in
inference accuracy [6]. The first two experiments
are new for this work.

Optimizing Applications for GPU
To evaluate the GPU autotuner, we conducted

an experiment on seven benchmarks: a five-stage
camera image processing pipeline (CAVA)2, an
Edge Detection program for grayscale images
from [2] whose DFG is a six-node DAG,
and five multi-kernel benchmarks from Rodinia
[13] : breadth-first search (BFS), backpropagation
(Backprop), speckle reducing anisotropic diffu-
sion (SRAD), and both the “Euler” and “Pre-
euler” implementations of the computational fluid
dynamics solver (CFD). The hardware was an
Intel Xeon 4216 CPU and NVIDIA RTX 2080
Ti GPU. Each data point is the average of five
runs, with error bars showing the range.

Figure 4(a) shows speedups compared to base-
lines compiled from the programs using HPVM’s
single-threaded CPU back end, without applying
our optimizations. Orange and gray bars show
speedups achieved by HPVM without and with
our optimizations, respectively, including auto-
tuning in the latter. For Euler, Pre-Euler and BFS,

2https://github.com/yaoyuannnn/cava/

6 IEEE Micro

autotuning does not add much benefit over the
GPU version. For the other four benchmarks, the
widely varying configurations selected by auto-
tuning demonstrate the importance of autotuning
to achieve source code portability and hardware-
agnostic programming. For example, Edge and
Backprop had loops that were fully unrolled,
Euler and SRAD had partially-unrolled loops,
while CAVA had only one loop unrolled. Making
similar design choices manually requires trial
and error, and achieving sufficient coverage of
the search space through manual exploration is
often impractical, and most seriously, can lead
to hardware-specific tuned code, which compro-
mises source code portability.

SRAD suffers a slowdown on the GPU, even
with autotuning, due to a sum-reduction kernel
that is not parallelized by HPVM. Through au-
totuning, loop unrolling was able to reduce the
slowdown from 5.5× to 1.7×. Automating the
parallelization of reductions for GPUs is planned,
along with support for other important GPU
optimizations like tiling for GPU registers and
scratchpad memory.

Including initial random sampling to initialize
HyperMapper, 212 designs were evaluated for
CAVA and Backprop, while 400 were evaluated
for Edge Detection, proportional to their parame-
ter counts. The remaining benchmarks had so few
parameters that all designs in the search space
were evaluated before reaching their set iteration
counts, producing between 2 and 48 samples.
This contributed to a large range of autotuning
times, taking between 1 and 445 minutes for a
full run (average 146). Time per sample ranged
between 23 and 388 seconds (average 122), since
each sample is executed on the GPU during
autotuning.

Partitioning Applications on multiple devices
Partitioning applications across multiple de-

vices (e.g. GPU and FPGA) poses two main
challenges: 1) programmability, since different
devices tend to have different programming mod-
els and languages, and 2) partitioning decisions,
which requires an intimate knowledge of the per-
formance tradeoffs for each target device. HPVM
allows us to overcome the first challenge by sup-
porting a unified hardware-agnostic programming
language and IR that can be targeted to multiple

different devices. As a proof-of-concept, we man-
ually partitioned the Edge Detection benchmark
of the previous section using device hints on
the nodes, putting the reduction kernel (which
dominates the execution time) on the FPGA
and leaving the rest on the GPU. Our target
GPU+FPGA system uses an Intel Xeon W-2275
CPU, an NVIDIA Quadro P1000 GPU, and an
Intel Arria 10 GX FPGA. Figure 4(b) shows
the performance results averaged over ten runs.
The speedup increases by around 3× by moving
the reduction kernel to the FPGA, demonstrating
the strong benefits of such a partitioning. (The
base GPU speedup is lower than in 4(a) because
the Quadro P1000 is much slower than the RTX
2080 used there.) As in the previous experiment,
the GPU performance of the reduction could be
improved by parallelizing it, but the nature of
pipeline parallelism in an FPGA is better suited
for reductions and can handle non-associative
reductions which cannot be parallelized on a
GPU.

This experiment shows that HPVM is able
to overcome the first challenge described above.
Additionally, once our autotuner is extended to
support multiple target devices at the same time,
the partitioning decisions would be automated
and optimized as well, thus solving the second
challenge of multi-device partitioning.

Performance Improvements using ApproxTuner
Figure 5(a) shows our evaluation results [6]

using ApproxTuner on ten popular CNN bench-
marks measured on the Jetson Tegra Tx2 GPU.
The graph shows speedups obtained compared
to a baseline that does all operations in FP32
on the GPU, with no approximations. We con-
figured ApproxTuner to choose from three dif-
ferent hardware-independent approximations per
tensor operation: FP16, perforated convolutions,
and sampled convolutions.

Across benchmarks, when allowed merely one
percentage point drop in accuracy, ApproxTuner
achieves a mean 2.1× speedup compared with
the baseline. Relaxing the accuracy threshold to
2 and 3 percentage points (red and orange bars,
respectively) provides only a small increase in
speedups, to 2.2× and 2.3×, showing that most
of the benefits are gained simply by allowing any
approximation at all.

September/October 2022 7

Figure 4: (a) Results for GPU autotuning. Figure shows
speedup of hardware-agnostic code running unoptimized on
GPU (orange bar) and optimized using autotuning (grey bar)
compared to CPU. GPU is NVIDIA 2080 Ti. (b) Speedups
compared with CPU for two device partitionings of Edge
Detection. GPU is NVIDIA Quadro P1000 and FPGA is Arria
10 GX.

As expected, each network is amenable to a
different set of approximations; there does not
exist an approximation that provides the best
accuracy-performance tradeoff on all networks.
For example, Alexnet is amenable to perforated
convolution and more sensitive to sampled con-
volution, while it is the opposite for the VGG
networks, which ApproxTuner discovers through
tuning. In addition, ApproxTuner finds that the
first few and last convolution layer in a network
cause the highest errors due to approximations,
and it approximates these layers conservatively.

Figure 5(b) shows that ApproxTuner can
counteract system slowdowns induced by low
frequency modes on the GPU. As frequency
lowers from left to right (x-axis), the normalized
batch processing time (y-axis) shown by the blue
line increases. ApproxTuner uses the shipped
Pareto curve to pick configurations that increase
speedups in order to counteract these slowdowns,
while sacrificing small amounts of accuracy. The
red dotted line shows batch processing times
stabilize when ApproxTuner dynamic tuning is
enabled. The yellow line shows that as frequency
decreases, the neural network accuracy gradually
decreases since higher approximation levels are

2.14
2.23
2.28

S
pe

ed
up

1.00

1.50

2.00

2.50

3.00

Alex
ne

t

Alex
ne

t_i
mag

en
et

Alex
ne

t2

Res
ne

t18

Res
ne

t50

Vgg
16

_1
0

Vgg
16

_1
00

Vgg
16

_im
ag

en
et

Mob
ile

ne
t

Le
ne

t

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(a)

(b)

Figure 5: (a) Speedups achieved on GPU using approx-
imations for ∆QoS1%, ∆QoS2%, ∆QoS3%. (b) Runtime
approximation tuning maintains stable responsiveness (red
line) with little lost of accuracy in most of the range (yellow),
when GPU frequency is reduced. Time on the y-axis is
relative to that at the highest GPU frequency (1.3Ghz).
Without dynamic approximations, the application slows down
(blue line). (from ApproxTuner [6]).

needed to counter greater slowdowns.

Directions for Further Work
As heterogeneous systems adopt more diverse

accelerators, we will continue expanding HPVM
with more device back ends, and more advanced
optimization and tuning techniques. This includes
extending our autotuner to automatically partition
programs across PEs, while also optimizing them
for each target.

We are also working on making HPVM even
more retargetable for a wide range of emerging
tensor architectures, including CPU ISA exten-
sions (Intel AMX, Power MMA), GPU extensions

8 IEEE Micro

(NVIDIA’s Tensor Cores, AMD’s Matrix Cores),
and custom ML accelerators (Amazon Inferen-
tia/Trainium, Google TPU, NVDLA).

We also aim to leverage HPVM to greatly
simplify DSL design and implementation for
high-level applications that benefit from hetero-
geneous systems.

We are also interested in extending approxi-
mation tuning to emerging application domains,
particularly edge computing domains such as
mobile robotics, AR/VR, and video analytics.

Acknowledgements
This work was supported in part by NSF

Grants CCF 13-02641 and CCF 16-19245,
the Semiconductor Research Corporation and
DARPA through the Center for Future Archi-
tectures Research (C-FAR) and the Applications
Driving Architectures (ADA) center, the DARPA
DSSoC Program, by grants from Intel Corp, and
by the Amazon AWS Machine Learning Research
Awards and Amazon Research Awards programs.

Sidebar: Key Takeaways
• HPVM enables hardware-agnostic program-

ming of heterogeneous systems via a hierarchi-
cal dataflow graph abstraction of parallelism
that supports retargetable compilation to di-
verse hardware, such as CPUs, GPUs, FPGAs,
and domain-specific accelerators.

• HeteroC++, PyTorch and other hardware-
agnostic front ends simplify programming het-
erogeneous systems, and facilitate offloading
different application components to different
devices while preserving source-code and (op-
tionally) object-code portability.

• Sophisticated HPVM and LLVM optimiza-
tions, together with target-specific autotuning,
deliver significant performance improvements
without manual tuning, which greatly improves
source-level portability and maintainability.

• The ApproxTuner automated approximation
tuning framework for tensor operations sup-
ports powerful accuracy-aware optimizations
and run-time adaptation, while preserving
hardware-agnostic programming and object-
code portability.

REFERENCES

1. V. Adve et al.,“Virtual Instruction Set Computing for Het-

erogeneous Systems,“ USENIX Workshop on Hot Topics

in Parallelism, 2012.

2. M. Kotsifakou et al., “HPVM: Heterogeneous Parallel

Virtual Machine,“ Proc. ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2018.

3. D. Koeplinger et al.,“Spatial: a language and compiler for

application accelerators,“ Proc. ACM SIGPLAN Confer-

ence on Programming Language Design and Implemen-

tation, 2018.

4. T. Chen et al., “TVM: An Automated End-to-End Opti-

mizing Compiler for Deep Learning,“ USENIX Sympo-

sium on Operating Systems Design and Implementation,

2018.

5. H. Sharif et al. “ApproxHPVM: a portable compiler IR for

accuracy-aware optimizations,“ in Proc. ACM Program-

ming Languages, 2019.

6. H. Sharif et al., “ApproxTuner: a compiler and runtime

system for adaptive approximations,” Proc. ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming, 2021.

7. A. Ejjeh et al., ”HPVM2FPGA: Enabling True Hardware-

Agnostic FPGA Programming,” Proc. IEEE International

Conference on Application-specific Systems, Architec-

tures, and Processors, 2022.

8. S. Dasgupta et al., “Scalable Validation of Binary Lifters,“

Proc. ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 2020.

9. N. Zmora et al.. “Neural network distiller: A python pack-

age for dnn compression research,” arXiv, 2019.

10. L. Nardi et al., “Practical design space exploration,”

Proc. IEEE International Symposium on Modeling, Anal-

ysis, and Simulation of Computer and Telecommunica-

tion Systems, 2019.

11. P. Srivastava et al. ”PROMISE: An end-to-end design of

a programmable mixed-signal accelerator for machine-

learning algorithms,” Proc. ACM/IEEE International Sym-

posium on Computer Architecture, 2018.

12. P. Mantovani et al., “Agile SoC Development with

Open ESP,“ Proc. IEEE/ACM International Conference

On Computer Aided Design, 2020.

13. S. Che et al., ”Rodinia: A benchmark suite for heteroge-

neous computing,” Proc. IEEE International Symposium

on Workload Characterization, 2009.

Adel Ejjeh is a PhD student at University of Illinois
at Urbana-Champaign.

September/October 2022 9

Aaron Councilman is a PhD student at University
of Illinois at Urbana-Champaign.

Akash Kothari is a PhD student at University of
Illinois at Urbana-Champaign.

Maria Kotsifakou is a software engineer at Runtime
Verification, Inc. in Urbana, IL.

Leon Medvinsky is a PhD student at University of
Illinois at Urbana-Champaign.

Abdul Rafae Noor is a PhD student at University of
Illinois at Urbana-Champaign.

Hashim Sharif is a postdoctoral researcher at Uni-
versity of Illinois at Urbana-Champaign.

Yifan Zhao is a PhD student at University of Illinois
at Urbana-Champaign.

Sarita Adve is a professor at University of Illinois at
Urbana-Champaign.

Sasa Misailovic is an assistant professor at Univer-
sity of Illinois at Urbana-Champaign.

Vikram Adve is a professor at University of Illinois at
Urbana-Champaign.

10 IEEE Micro

