Challenge Benchmarks That Must Be Conquered to Sustain the GPU Revolution

Emily Blem
Matt Sinclair
Karu Sankaralingam
University of Wisconsin-Madison
Department of Computer Sciences
Vertical Research Group
Let’s begin by thinking about a mouse.
Walt Disney Co. in the beginning …

- Walt Disney originally decided to be an animator.
- His initial successes came in the 1920’s and 1930’s.
- He was doing very well, and wasn’t forced to expand into other areas…
Walt Disney Co. as we know it.
Motivation

- GPUs are very good at data parallel programs.

- However, just like Walt Disney Co., for them to continue to grow, they need to expand.

- In this paper we find benchmarks that currently do not perform well on GPUs, but could perform well.
Executive Summary

- We have identified 19 challenge benchmarks.

- Our analysis suggests that there is no simple tweak to get them to perform well on GPUs.
Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions
Identifying Challenging Benchmarks

- Searched common GPU benchmark suites:
 - Rodinia
 - GPGPU-Sim
 - SHOC
 - Others

- Wrote some of our own from the PARSEC suite.

- **Goal**: Identify benchmarks from these suites that perform poorly on GPUs.
Classifying Benchmarks as Challenging

- For all benchmarks that perform at \(\leq 40\% \) of peak effective GPU IPC.
 - We classify these benchmarks as **challenging**.
- What is effective IPC?
 - IPC calculated using only useful instructions per cycle (i.e. ignoring masked instructions).
- We use a Tesla C1060-like configuration & GPGPU-Sim version 2.1.1b.
The Challenging Benchmarks

- From GPGPU-Sim (5/14):
 - WP, NN, N-Queens, Mummer, BFS

- From Rodinia (10/20):
 - SC, SRAD1, Backprop, Heartwall, HW Tracking
 - CFD, BFS, NN, NW, Myocyte

- PARSEC:
 - Fluidanimate, Swaptions

- Others:
 - S3D (SHOC)
 - Mummer++
Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions
GPU Bottleneck Categories

- Available Parallelism
- Control Flow
- Memory Access
Available Parallelism

- Limited by:
 - Fraction of algorithm that is parallelizable.

- Subcategories:
 - Block Parallelism (BP)
 - Thread Parallelism (TP)

- 12/38 kernels.
Control Flow

- Limited By:
 - Thread divergence.
 - Serial execution (due to atomics, barriers, etc.).

- Subcategories:
 - Few active threads per warp (WP)
 - Single active thread per warp (ST)

- 21/38 kernels.
Memory Access

- Limited by:
 - Lack of caching
 - Heavy cache contention.
 - For lightly threaded benchmarks, GPUs can’t effectively hide latency of accesses.

- Subcategories:
 - Memory Bandwidth (BW)
 - Long Latency of Memory Access (LAT)

- 19/38 kernels.
Performance Impact of Bottlenecks

- 32/38 kernels reach peak machine efficiency after bottlenecks are removed.
 - Some require up to 5 bottlenecks be removed before reaching peak.
 - Kernels that do not reach peak are limited by synchronization.

- Need to remove different bottlenecks for each benchmark to reach peak efficiency.

- Benchmarks require a 19x geometric mean speedup to reach peak machine efficiency.
Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
 - BFS (Rodinia)
 - Fluidanimate
- Conclusions
Case Study: BFS (Rodinia)

- 2 kernels:
 1. Marks which nodes are visited.
 2. Marks children as next; updates costs of nodes.

- 1 thread for each node in the tree, but only a few threads do useful work.
 - Little locality in accesses.

Sinclair - GPU Challenge Benchmarks - EAMA '11
BFS Con’t

<table>
<thead>
<tr>
<th>Metric</th>
<th>Kernel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective IPC</td>
<td>4.9</td>
</tr>
<tr>
<td>Average Threads/Warp</td>
<td>10</td>
</tr>
<tr>
<td>Serialization</td>
<td>25%</td>
</tr>
<tr>
<td>Memory Access Coalesced</td>
<td>56%</td>
</tr>
<tr>
<td>DRAM Bandwidth (GB/s)</td>
<td>70</td>
</tr>
<tr>
<td>Stalled for Memory</td>
<td>76%</td>
</tr>
<tr>
<td>Bottlenecks</td>
<td>WP, ST, LAT</td>
</tr>
</tbody>
</table>
Case Study: Fluidanimate

- The fluidanimate GPU implementation requires many calls to global memory to access values.

- Also exhibits thread divergence and register pressure.

- CPU synchronization between each stage in the computation due to lack of efficient global GPU synchronization mechanism.
Fluidanimate Con’t

<table>
<thead>
<tr>
<th>Metric</th>
<th>Kernel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective IPC</td>
<td>0.1</td>
</tr>
<tr>
<td>Average Threads/Warp</td>
<td>3</td>
</tr>
<tr>
<td>Serialization</td>
<td>51%</td>
</tr>
<tr>
<td>Memory Access Coalesced</td>
<td>3%</td>
</tr>
<tr>
<td>DRAM Bandwidth (GB/s)</td>
<td>13</td>
</tr>
<tr>
<td>Stalled for Memory</td>
<td>40%</td>
</tr>
<tr>
<td>(All) Bottlenecks</td>
<td>WP, BP, LAT, ST</td>
</tr>
</tbody>
</table>
Modeled speedups after removing bottlenecks

- We explored different design improvements to improve GPGPU performance.

 – Just adding additional cores or isolating a single bottleneck is not sufficient.
Thus, we look at pairs of design changes.

- Results: (N/35 kernels)
 - Group X: Near peak IPC after any design pair introduced (12).
 - Group Y: Need specific design pair to get near peak IPC (10).
 - Group Z: Don’t reach peak IPC even after multiple pairs (13).

- No single technique to help all benchmarks.
Outline

- Introduction
- Identifying Challenge Benchmarks
- Bottlenecks
- Case Studies
- Conclusions
Conclusions

- We’ve introduced a set of challenging benchmarks
 - These benchmarks represent the issues future GPUs need to overcome to allow GPUs to become more general-purpose.

- We’ve also explored the bottlenecks for these benchmarks and highlighted how alleviating them will affect performance.
 - Many changes need to be made to the GPU architecture
 - This is a hard problem, 1 or 2 techniques are not sufficient.
Questions?

Paper available at cs.wisc.edu/vertical/
Backup Slides
By solving these challenges, GPUs can continue to expand.
Case Study: Neural Network

- The neural network executes by calling a series of layers, which update the weights of the neurons.

- Varying number of threads per layer to account for varying number of neurons.
 - Never more than 3000 threads per layer.

- All neurons access global memory when updating their values and passing them to the next layer.
Neural Network Con’t

<table>
<thead>
<tr>
<th>Metric</th>
<th>Kernel (Layer) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective IPC</td>
<td>12</td>
</tr>
<tr>
<td>Average Threads/Warp</td>
<td>25</td>
</tr>
<tr>
<td>Serialization</td>
<td>0%</td>
</tr>
<tr>
<td>Memory Access Coalesced</td>
<td>90%</td>
</tr>
<tr>
<td>DRAM Bandwidth (GB/s)</td>
<td>64</td>
</tr>
<tr>
<td>Stalled for Memory</td>
<td>65%</td>
</tr>
<tr>
<td>(All) Bottlenecks</td>
<td>BW</td>
</tr>
</tbody>
</table>
Case Study: Mummer++

- Kernel is attempting to align genomes

- Very limited number of threads (256)

- Lots of divergence within the kernel because we’re using lots of conditionals in the pairing process.

- Most of references are to global memory.
Mummer++ Con’t

<table>
<thead>
<tr>
<th>Metric</th>
<th>Kernel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective IPC</td>
<td>0.3</td>
</tr>
<tr>
<td>Average Threads/Warp</td>
<td>8</td>
</tr>
<tr>
<td>Serialization</td>
<td>37%</td>
</tr>
<tr>
<td>Memory Access Coalesced</td>
<td>77%</td>
</tr>
<tr>
<td>DRAM Bandwidth (GB/s)</td>
<td>52</td>
</tr>
<tr>
<td>Stalled for Memory</td>
<td>58%</td>
</tr>
<tr>
<td>(All) Bottlenecks</td>
<td>WP, BP, ST</td>
</tr>
</tbody>
</table>
BFS Alternate Data

<table>
<thead>
<tr>
<th>Metric</th>
<th>Kernel 1</th>
<th>Kernel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective IPC</td>
<td>4.9</td>
<td>104.3</td>
</tr>
<tr>
<td>Average Threads/Warp</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>Serialization</td>
<td>25%</td>
<td>4%</td>
</tr>
<tr>
<td>Memory Access Coalesced</td>
<td>56%</td>
<td>97%</td>
</tr>
<tr>
<td>DRAM Bandwidth (GB/s)</td>
<td>70</td>
<td>34</td>
</tr>
<tr>
<td>Stalled for Memory</td>
<td>76%</td>
<td>33%</td>
</tr>
<tr>
<td>Bottlenecks</td>
<td>WP, ST,</td>
<td>LAT</td>
</tr>
<tr>
<td></td>
<td>LAT</td>
<td></td>
</tr>
</tbody>
</table>
The changes with Fermi

- **Fermi additions:**
 - Local L1 and shared L2 caching.
 - More SPs per SM (doubles effective peak IPC)
 - **This is a step in the right direction.**

- We performed the same hardware profiling study on a Tesla C2050.

- **Result:** Challenge benchmarks were only sped up **1.5x**.
 - Limited parallelism and significant thread divergence are still problems.