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Abstract—The memory hierarchy is predicted to be a major
consumer of on-chip energy, leading researchers to develop
techniques that minimize the amount of data moved and the
distance that it is moved. While many techniques have been
shown to be successful at reducing the amount of on-chip
network traffic, no studies have shown how close a combined
approach would come to eliminating all unnecessary data
traffic, nor have any studies provided insight into where the
remaining challenges are. This paper systematically analyzes the
traffic inefficiencies of a directory-based MESI protocol and a
more efficient hardware-software co-designed protocol, DeNovo.
DeNovo provides techniques to address network traffic waste,
but only at the L1 cache. In this paper, we categorize data waste
into various categories and explore several simple optimizations
extending DeNovo with the aim of eliminating all of the on-chip
network traffic waste. Specifically, we focus on mitigating the
network traffic waste that is destined to and originating from the
last level cache. With all the proposed optimizations, we are able
to completely eliminate (100%) on-chip network traffic waste at
L2 for some of the applications (70.8% on average) compared
to the original DeNovo protocol. As a result, on average, 8.8%
of the remaining total traffic (L1 and LLC) is spent fetching
non-useful data. Using only our optimizations, we found that
reducing this non-useful data movement further would not be
possible without losing performance because of irregular access
patterns in the applications.

I. INTRODUCTION

Computer performance is currently limited by energy
efficiency. Due to the growing energy cost of data movement
relative to computation, improving the energy efficiency of
the memory hierarchy is an important part of reaching the
future energy goals [4], [18], [15].

There are several sources of energy inefficiency in today’s
memory hierarchies. In this paper, we specifically focus on
the implications of data that is never used. Transferring data
that is never used from one point to another in the memory
hierarchy incurs unnecessary network traffic which directly
contributes to wasted energy in the system. Once such data
is transferred to a destination, it is stored in on-chip memory
organization units (e.g., caches, scratchpads, etc.) resulting
in less available space for useful data and hence indirectly
contributes to energy wastage.

We begin our analysis by providing a classification of all
data into six different categories. One of the categories is
for used words and five are for words that are never used
before getting evicted or overwritten (wasted). We limit our
study to focus on quantifying unnecessary network traffic
caused by each of the waste categories and proposing simple
optimizations to nearly eliminate each of these wastes.
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Towards this end, we chose a directory-based MESI
protocol on a standard multicore system as a baseline. MESI
is used as our starting point because it has been the de facto
standard for research into scalable processors that provide a
shared-memory abstraction. However, there are several well-
known traffic overheads that make MESI less than ideal for
energy-efficiency. Some of these overheads are a result of
using fixed cache line sizes for coherence and data transfer.
For example, the use of fixed cache lines can cause excessive
traffic for applications that have false sharing, poor spatial
locality, or data that is overwritten before it is read. Other
overheads include the traffic required for maintaining pro-
tocol correctness (e.g. invalidation and “directory unblock”
messages).

Given the inherent overheads with the MESI protocol,
we study an alternative hardware-software co-designed pro-
tocol named DeNovo [7]. DeNovo leverages software-level
information to replace writer-initiated invalidation for cached
copies with self-invalidation, which makes it much more ef-
ficient than MESI. In terms of network traffic improvements,
a baseline implementation of DeNovo eliminates many of
the messages used in MESI to maintain coherence, such
as invalidation and “directory unblock” messages, and it
also eliminates false sharing by keeping coherence at finer
granularity.

The DeNovo protocol in [7] already successfully re-
duces unnecessary network traffic by introducing a flexible
communication granularity optimization (Flex) which fetches
only “useful” data in contrast to traditional fixed cache line
granularity data transfers. However, it focused only on L1
cache related network traffic waste. It did not analyze this or
any other sources of remaining waste.

Our goal in this paper is to eliminate every bit of waste in
on-chip traffic. We analyze the effectiveness of the DeNovo
protocol and its Flex optimization in eliminating waste at
L1. We then quantify the amount of waste at L2 and explore
several simple optimizations that extend the DeNovo protocol
to eliminate different types of waste at L2. Specifically, we
applied a write-validate write policy to reduce the amount
of data that is overwritten before it is read, a last-level
cache bypass optimization that reduces traffic to the last-level
cache, and a mechanism that can safely send load requests
directly to memory if it is likely to be a last-level cache
miss. These optimizations not only reduce network traffic
and execution time, but can also be implemented with little
additional protocol complexity.

Compared to the original DeNovo protocol with Flex, we
reduce on average 93.5% (up to 100% for two applications)
of the total waste at L2 for applications with predictable
regular access patterns. This has direct implications on the
network traffic waste destined to or originating from L2
(reduced by 94.5% on average). For applications that have a
lot of unpredictable data access patterns, we see an average
reduction of only 19% in total L2 waste compared to the
DeNovo protocol with Flex optimization. The remaining
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L2 waste is hard to eliminate without either increasing the
complexity of hardware or having a negative impact on the
execution time. In addition to reducing network waste, these
optimizations also reduce total network traffic and execution
time (more details in Section VI).

Our specific contributions are as follows:

• We provide a classification of data waste.
• We quantify and analyze the amount of network traffic

waste eliminated by the DeNovo protocol and its Flex
optimization.

• We explore several simple optimizations on top of the
DeNovo protocol without resulting in any additional
protocol complexity that eliminate most of the on-
chip waste, at least for applications with little or no
unpredictable access patterns.

• With all the proposed optimizations together, we are able
to completely eliminate the on-chip network traffic waste
at L2 for some of the applications (70.8% on average)
compared to the original DeNovo protocol.

• Our final DeNovo protocol that has all optimizations
applied wastes only 8.8% of its traffic. We describe the
underlying causes of this remaining waste and explain
why it is difficult to remove without losing performance.

II. BACKGROUND

DeNovo [7] is a hardware-software co-designed coher-
ence protocol that exploits software information for better
performance-, power-, and complexity-scalability. These de-
sign choices allow for sharers-lists and invalidation messages
in today’s directory based coherence protocols to be replaced
with self-invalidation instructions that invalidate stale data
at phase barriers. The storage saved by eliminating sharers-
lists in turn enabled DeNovo to maintain coherence at finer
granularity (word) than traditional cache line. DeNovo uses
the last-level cache to store per-word ownership (referred
to as registration) which results in complete elimination of
false sharing. Finally, assuming a disciplined software model
that provides data-race-free guarantee, DeNovo completely
eliminates transient states from the hardware implementation
of the protocol. Together, these properties allow the DeNovo
protocol to be drastically simpler to verify and extend than
other directory-based protocols.

Based on the language and compiler support as demon-
strated in the Deterministic Parallel Java project [3], [14],
DeNovo assumes metadata that efficiently summarizes the
memory regions that are read or written in each phase (whose
boundaries are marked by barriers). This information can
be conservative; e.g., if such metadata is not available, all
memory is assumed to be read and written as a default.

DeNovo uses such software information to provide coher-
ence and consistency in hardware. First, to make sure a read
never sees stale data in its private cache, compiler-inserted
self-invalidation instructions use the regions to selectively
self-invalidate potentially stale data at phase boundaries.
Second, to locate an up-to-date copy of the data in case of
read misses, the private caches send a registration request to
the last-level cache for every address that the core writes in
DeNovo. When the last-level cache receives the registration
request it stores the new registration information and sends
an invalidation message to the old registrant, if one exists, to
prevent that core from using stale data.

The lack of sharers-list allows valid data to be sent from
any cache to any other cache without sending additional
messages to the directory.

The coherence granularity is decoupled from the data
transfer granularity. In traditional protocol designs, data is
moved in fixed cache line sizes. As DeNovo is built on
word-level coherence and has no sharers lists, the hardware
is able to respond with subsets of a cache line, and it
can also prefetch words from different cache lines into the
same response message. This optimization is called as the
“flexible communication granularity (Flex)”. The benefit of
this feature is that it allows the hardware to reduce the amount
of unnecessary on-chip traffic and improve performance.

III. WASTE CHARACTERIZATION

We separately analyze network traffic for loads, stores,
and writebacks. For loads and stores, we distinguish between
traffic destined to the L1 and the L2 caches (without loss
of generality, we assume a two level cache hierarchy with
private L1 and shared L2 data caches). To understand the
sources of waste for load and store traffic, we classify data
resident in a cache into six categories described below.

Used: For the L1 cache, a word that is read by its core; for
an L2 cache, a word resident in the cache that is sent in
response to an L1 request.1
Write Waste: a word that is overwritten before being profiled
as Used.
Fetch Waste: a word brought into a cache where the word is
already present as either dirty or was brought in by a previous
request.
Invalidate Waste: a word that is invalidated by the coherence
protocol before being profiled as Used.
Evict Waste: a word that is evicted before being profiled as
Used or Write.
Unevicted: a word that is present in a cache at the end of
the simulation and has not been classified. As many of the
applications in this study use shortened simulation runs, it
is unknown whether the words in this category would have
been used if the simulation had continued.

Word%arrives%at%L1%

Word%present%
in%cache?%

Fetch%

Unevicted%Used%

Write% Evict%

Invalidate%

No%

Yes%

load% invalidate%

Fig. 1: Finite state machine for waste profiling at the L1 cache.

Figure 1 shows the decision diagram for how data sent
to the L1 is categorized. The load and store actions in
the figure occur when the L1’s core issues a load or store

1For the L2, words brought in response to a miss are not (yet) considered
Used. Such words may be useful to send to the L1, but sending them to
the L2 (from the memory controller) is useful only if they will be accessed
again at the L2.
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for that address. An evict action occurs when the word
is deallocated from the cache to make room for incoming
data. The invalidate transitions occur on protocol-specific
invalidation actions (e.g., self-invalidation for DeNovo and
invalidation messages for MESI). The decision diagram at
the L2 is analogous to that of the L1 (there is no invalidation
action at the L2 and the store action is replaced with “L1
writeback” instead).

A load or a store related network data flit is categorized
as above depending on how the data it carries is categorized.
Note that in many cases, this categorization can be known
only after the data has stayed in the destination cache for
some period of time. For writeback (data) flits, analogous to
loads and stores, we separate writeback (data) traffic coming
from L1 or L2. We categorize a writeback data flit as Used
or Waste based on whether the corresponding word is dirty
or not.

IV. SIMPLE OPTIMIZATIONS TO REDUCE NETWORK
TRAFFIC WASTE

DeNovo’s Flex optimization primarily targets network
traffic waste destined for the L1 cache. Motivated by our
waste analysis results (Section VI-A), this section discusses
several simple optimizations for the DeNovo line protocol [7]
that mitigate the network traffic waste related to the L2 cache.
As described below, the optimizations do not introduce addi-
tional protocol complexity (e.g., transient states) to DeNovo
but do require small hardware changes; in contrast, similar
optimizations for MESI would require significant changes to
the protocol and would be a lot more difficult to implement.

L2 Write-Validate: The original DeNovo protocol chose
to implement a write-validate write policy [13] at the L1 and a
fetch-on-write write policy at the L2. This means that a write
miss at the L1 would not fetch the rest of the cache line, and
a write miss at the L2 would fetch the entire line from main
memory. Fetching the entire line on an L2 write miss will
introduce Fetch waste for the critical word (the word that was
explicitly requested by the core) and may also introduce Write
and Evict waste for the remaining words in the line. In this
optimization, we change the L2 write policy to also be write-
validate. This change reduces the amount of on-chip (and
off-chip) traffic that is spent moving overwritten or unused
data. Overhead: this optimization requires an additional valid
bit for each word in the L2 (3% increase in storage).

L2 Dirty-Words-Only Writeback: This optimization
uses the L2 per-word dirty bit information so that writebacks
to memory from the L2 will only include dirty data, saving
the unnecessary traffic required for data that is unchanged.
This directly addresses the source of waste in L2 writeback
traffic (L1 writebacks already perform this optimization).
This change requires no additional L2 storage overhead as
DeNovo already has per-word dirty bits. It, however, requires
DRAM designs that support writing subsets of a cache
line to DRAM. Although this is not currently supported by
commercial DRAMs, recent research proposes solutions to
this problem (e.g., [32]). We assume such support in this
paper.

Memory Controller to L1 Transfer: For L2 misses,
the original DeNovo protocol sends data from the memory
controller to the L2, and then the L2 forwards the data to
the requesting L1. This optimization modifies the protocol
so that the memory controller sends the data to both the L1

and the L2 in parallel. The main benefit of this optimization
is to reduce the memory hit latency (and not network waste);
however, we include it here as a stepping stone to the
“L2 Response Bypass” optimization below. The optimization
needs some care since the response from memory contains
the entire cache line even though some of the words in the
line may have been modified on-chip. To maintain coherence
in this situation, the L2 attaches a bit vector to each request
that goes from the L2 to the memory controller – this vector
marks which words are dirty and should not be returned to the
requesting L1. The memory controller uses this information
to filter invalid words from the data it fetches from memory,
and sends the remaining data to both the L1 and the L2.
A bit vector is also included in the response so that the
receiving caches can determine which words are contained
in the message. It is possible that some other core wrote
to some of the words while the memory controller was
waiting for the response from memory. We do not need
to update the bit vector at the memory controller as data-
race freedom guarantees us that the requesting core will not
access these modified words in the current phase (these words
get self-invalidated before the next phase begins). Overhead:
this optimization requires an additional bit vector in the
control message (2B for a 64B cache-line) and at the memory
controller.

L2 Flex: The Flex optimization (Section II) was orig-
inally applied to requests that hit an on-chip (L2/remote
L1) cache, it therefore reduced waste in traffic to the L1.
Responses that came from memory and directed to the L2
would return the normal cache line. By extending Flex into
the L2-main memory interface, we can prevent useless data
from being returned from memory, thereby reducing Evict
waste traffic.

For our evaluation, we conservatively use a conventional
DRAM protocol that only allows for cache line sized reads.
Instead, the memory controller uses the Flex information on
the cache line(s) received from DRAM and only forwards
the needed words in the response message to the on-chip
cache(s). Flex also allows prefetching communication region
data that spans multiple cache lines. We restricted this to
only request lines that lie in the same DRAM row as the
critical (requested) address because row activation is an
expensive operation. With proper DRAM support, such as
the design presented in [32], the amount of data brought
in from memory could also be reduced. Overhead: this
optimization extends the memory controller to maintain the
Flex information of a given request.

L2 Response Bypass: A well-known problem with large
data set sizes is that L2 cache lines generally have poor L2
reuse. Without reuse, caching the line at the L2 incurs energy
wastage for moving data to the L2, inserting it into the cache,
and potentially evicting other data to make space for the line.
Specifically, for our purposes, moving such data from the
memory controller to the L2 is wasteful of network traffic,
potentially incurring Evict waste. We therefore explore an
optimization that prevents lines with poor reuse from being
sent to the L2 cache. We found that this optimizations was
useful for targeting two types of access patterns: (1) the
region is read and then overwritten by the same core, or (2)
the amount of data in a region exceeds the L2 cache size
and is read only once in the current phase of the application.
To identify these access patterns, we rely on the programmer
or compiler to specify which regions of data should bypass
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the L2 (using annotations similar to the ones used in [7]).
Overhead: the memory controller maintains a bit per request
to indicate whether to bypass L2 or not and the request
message to the memory controller needs a bit to communicate
the same (1 bit for a 64B cache line).

Other optimizations: We explored two other optimiza-
tions that provided limited benefit. In the first, L2 Request
Bypass, even the request for an L1 miss bypasses the L2
(in addition to the L2 Response Bypass). This optimization
required significant hardware complexity and did not give
commensurate benefit over L2 Response Bypass since the
request packet length is small relative to that of a response.
This optimization does eliminate an unnecessary probe in the
L2 potentially providing energy savings from a source not
considered here.

The second, MMemL1, attempts to provide some of
the benefits of the Memory to L1 and the L2 Response
Bypass optimizations to the MESI protocol. It observes that
a small part of the benefits of these optimizations could be
obtained for MESI with little added complexity. Specifically,
the memory controller sends the response directly to the L1
requestor, which then forwards it to the L2, piggybacked on
its ack to unblock the directory. For stores, no data need
be sent to the L2, saving some network waste for MESI.
We found that this optimization had only a small impact
(Section VI-C).

We explain the above optimizations and their impact in
more detail in Section VI-C, but focus the rest of the paper
on the others.

Finally, except for MMemL1, we did not incorporate
any optimization in MESI due to the significant added
complexity to the coherence protocol. If we were able to
add these optimizations, we expect their improvements in
terms of network waste savings would be analogous to those
for DeNovo. Previous work already shows that DeNovo
significantly reduces network traffic relative to MESI [7] as
well as quantifies the high complexity of MESI relative to
DeNovo [19]; therefore, we do not study variations of MESI.
(except briefly the straightforward MMemL1).

V. METHODOLOGY

A. Protocols Studied

We studied the following protocols for our evaluations.
To keep the number of protocols small, we only used a
subset of the combinations of the optimizations introduced
in Section IV.
MESI: The MESI protocol included with the GEMS Sim-
ulator [23] (line granularity tags and coherence state). We
modified it to support non-blocking writes (up to 32 pending
write requests per core).
DeNovo: The baseline DeNovo line protocol [7] that keeps
tags at line granularity but maintains coherence at word
granularity. It is extended with a simple optimization of write
combining (previously reported in [29], [30]).
DFlexL1: DeNovo with the Flex optimization [7]. Flex is
only used for load responses from either the L2 or a remote
L1 to the requesting L1 cache.
DValidateL2: DeNovo with support for “L2 Write-Validate”
and “Dirty-Words-Only Writebacks.”
DFlexL2: DV alidateL2 with support for “Memory Con-
troller to L1 Transfer” and “L2 Flex.” We found that just

adding “Memory Controller to L1 Transfer” to DV alidateL2
had negligible impact, and do not discuss it further.
DBypL2: DFlexL2 with “L2 Response Bypass” support.

B. Simulation Infrastructure

We used the SIMICS full-system simulator to model each
core, the GEMS memory system simulator to model the
on-chip memory hierarchy and coherence protocols, Garnet
to model the on-chip network, and DRAMSim2 to model
DRAM timing. Since our focus is on the memory system in
this work, we use a simple, in-order core model from Simics
that completes all non-memory instructions in 1 cycle (similar
to other studies).

For our simulations, we model a tiled processor with 16
tiles. Each tile has a single core, a 32KB private L1 cache,
and a 256 KB slice of the shared L2.2 Each corner tile has
a memory controller connected to a single channel DIMM.
The tiles are connected by an on-chip mesh network3 with
a link width of 16 bytes. Packet sizes are limited to at most
one control flit and four data flits. A maximum of four data
flits means that at most 64 bytes of data can be included in
any message. Table I lists the specific design parameters used
for each of these components. 4

Component Parameters
Processor 16 cores; each is 2GHz, in-order
L1D (private) 32KB, 8-way, 64B cache lines
L2 (shared), 16 banks 4MB, 16-way, 64B cache lines
Network (Mesh) 16B links, 3 cycle link latency 5

Memory Controller 4, FR-FCFS, open page policy
DRAM, 8 banks, 2 ranks DDR3-1066

TABLE I: Simulated system parameters.

C. Benchmarks

We use six of the seven benchmarks used in [7] (input
size specified in parenthesis) – FFT (m=16), LU (512x512
and 16x16 blocks), radix (4M integers and 1024 radix), and
Barnes-Hut (16K bodies) are from SPLASH-2,fluidanimate
(simmedium) is from Parsec, and a parallel kD-tree construc-
tion algorithm (kD-tree) (bunny) from [6]. As the DeNovo
protocols in this work do not support mutexes, the Barnes-
Hut tree building phase was sequentialized and fluidanimate
was modified to use the ghost cell pattern [17] to share data
between threads. We use the aligned version of LU to remove
false sharing.

VI. RESULTS

A. Overall Results

Figure 2 provides a high-level overview of our experi-
mental results. It shows the network traffic (part (a)) and
execution time (part (b)), normalized to MESI , for the
protocols studied. The network traffic (Figure 2b) is measured

2We did not model an L3 level cache (common in today’s microproces-
sors) as our benchmarks have relatively small input sizes to enable reasonable
simulation times.

3Although several current processors use rings, we chose a mesh network
because it is considered more scalable than a ring (e.g., Tilera [31]). We
believe our analysis and results will hold qualitatively on other topologies
as well although quantitative benefits may differ.

4We adjusted component latencies in our system to adhere to latencies
similar to Intel’s Nehalem [9]. We do not believe that changing these
latencies would significantly affect our results since our focus is largely
on network traffic waste.
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(b) Overall network traffic

Fig. 2: Network traffic and execution time of simulated protocols. All bars are normalized to MESI.

as flit-hops and is divided into four categories: loads, stores,
writebacks, and overhead. The first three categories contain
only the traffic necessary for the request and the response
to complete. The overhead category includes all the traffic
required to maintain coherence such as invalidation, ACK,
directory unblock, and NACK messages for MESI, and just
NACK for DeNovo. Figure 2a divides the execution time into
CPU busy or compute time (Compute), time spent stalled on
hits in the L2 cache or an on-chip remote L1 cache (On-
chip), time spent stalled on memory hits further categorized
as discussed below, and time spent stalled on synchronization
(Sync). The memory hit time for a request is further split into
the time it takes to reach the memory controller from the
requesting L1 cache (ToMC), the time spent at the memory
controller waiting for the DRAM request to complete (Mem),
and the time from the memory controller back to the L1 cache
(via L2 in many cases) labeled as FromMC.

Overall, the results show that, relative to the previous
state-of-the-art of DFlexL1, the optimizations explored in
this paper together are effective at reducing network traffic
with the same or improved execution times. DBypL2 shows
an average 18.2% (range of 0% to 39%) reduction in network
traffic relative to DFlexL1. The execution time reduction
ranges from 0% to 14.5% (6.8% on average). The next section
relates these overall results to a more detailed waste analysis.

B. Network Traffic Waste Analysis

Figure 3 shows the network traffic (in flit-hops) separated
as load, store, and writeback traffic in parts (a)-(c) respec-
tively, all normalized to MESI. For each part, we partition
the traffic into flit-hops spent for the control and data portion
of the messages. For the load and store traffic graphs, we
partition the control traffic further into the request message
(Req Ctl) and the header of the response message (Resp
Ctl). For writeback traffic, we merge flit-hops spent for the
control portion of the request and response messages into
a single category (Control). For the data portion, we break
the flit-hops spent moving data into several categories based
on its message type, i.e., response or writeback data, its
source/destination and its usefulness, and use the follow-
ing labeling: {Resp|WB} {From (Source)|To (Destination)}
{L1|L2} {Used|Waste}. For easy visual reference, the Waste
categories are shaded (hatched). As the flits may contain some
Used and some Waste data, we assign fractional flits to the
appropriate categories.

Figure 4 reports the various categories of waste from the
perspective of the data arriving into the L1 cache (part (a))
and the L2 cache (part (b)) due to loads and stores (as in
Section III). The magnitude of the waste at the L1 shown here
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(a) LD network traffic breakdown
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(b) ST network traffic breakdown
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(c) WB network traffic breakdown

Fig. 3: Network traffic broken down by load/store/writeback and
further broken down by control and data traffic. All bars are
normalized to MESI.

does not correspond exactly to the sum of the appropriate L1
wastes in Figure 3 because the former reports waste in terms
of words while the latter reports in terms of flit-hops. Both
metrics have value, so we provide them both.

Overall, Figure 3 shows that the optimizations studied
virtually eliminate all sources of waste related to the L2
cache (relative to DFlexL1). Figure 4 shows that they do
this by addressing all forms of waste. For waste related to
L1, DFlexL1 is very effective for the two applications that
it is applicable to, but leaves some L1 waste on the table.
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The following discusses each traffic type and optimization in
more detail.

1) Load Traffic: As seen in Figure 3a, the major improve-
ments in load traffic come from the Flex and the L2 Bypass
Response optimizations. The “FlexL1” optimization, as pre-
viously proposed in [7], focuses on eliminating Resp To L1
Waste, but it shows mixed performance with the benchmarks.
It is highly effective for Barnes-Hut and kD-tree, but not
applicable to the others. On the other hand, “FlexL2” and “L2
Bypass Response” optimizations successfully eliminate Resp
To L2 Waste for all benchmarks. With both the optimizations,
the DBypL2 protocol generates on average 23.1% less load
traffic than DFlexL1, and 32.7% less than MESI. Figure 3a
shows that DBypL2 almost completely eliminates the L2
Waste in the load traffic for radix and kD-tree. The “FlexL2”
optimization by itself benefits only kD-tree by reducing
27.7% of the load traffic compared to DFlexL1. Below, we
provide detailed account of how each optimization affects the
load traffic in terms of waste reduction.

FlexL1: Flex in FlexL1 is the only optimization in this
paper that targets reducing network traffic destined to L1.
Of the benchmarks in this work, only Barnes-Hut and kD-
tree benefit from the Flex for their particular AoS (Array-
of-Structures) access pattern. Their main data structures have
multiple fields of which different subsets are used only during
a certain phase but not in other phases. These fields are small,
and many of the useless words share a cache line with the
words that are useful in a phase. This results in bringing
in many useless words with the fixed cache-line granularity
communication. With the Flex, we can avoid sending the
unused fields from the on-chip caches and memory as the
hardware knows the relative offsets of the words that might be
useful to program. For these two applications, the load traffic
for DFlexL1 is reduced by an average of 32.4% relative to
DeNovo.

Relating the above results to detailed characterization of
L1 waste in Figure 4a, we can see that the total waste of
Barnes-Hut and kD-tree is reduced by 78.5% and 79.7%
repsectively in DFlexL1 compared to DeNovo. While Flex
significantly reduces Evict waste by not bringing in the
“useless” words destined to be evicted without being used,
it also introduces some Fetch waste. This is because Flex
aggressively brings in data from other cache lines that may
already exist in the cache. The remaining waste in DFlexL1
(other protocols studied here do not affect L1 network traffic
waste) show in Figure 4a is caused by less predictable access
patterns of the applications; fluid animate and LU have data
structures that are conservatively allocated thus not fully
utilized in runtime, which can result in Evict waste. The
remaining waste in Barnes-Hut and kD-tree are due to certain
data being conditionally used. This type of wasted data is
very difficult to eliminate without incurring high software
and hardware overheads.

FlexL2: DFlexL2 reduces the load traffic in the same
way as DFlexL1, but for the data brought into the L2
instead of the L1. Figure 3a shows that DFlexL2 gives
additional traffic reduction for kD-tree by 27.6% compared to
DFlexL1. While the both Barnes-Hut and kD-tree benefits
from DFlexL2 in reducing Resp To L2 Waste, the L2 read
miss rate of Barnes-Hut is so low compared to the L1 miss
rate that it does not show in the graph. The effect of “Flex L2”
on L2 waste reduction can be seen more closely in Figure 4b.

The figure shows that DFlexL2 reduces the total waste
by 39.3% and 65% for the both benchmarks respectively
compared to DFlexL1. Most of the reduced waste is Evict
waste, while Barnes-Hut introduces some Fetch waste as
described above.

L2 Response Bypass: This optimization proved effective in
minimizing the impact that data with poor L2 reuse has by
having it bypass the L2. It was applicable to fluidanimate,
FFT, radix, and kD-tree because their data sets greatly exceed
the size of the L2. For these benchmarks, DBypL2 reduces
the amount of load traffic by an average of 23.1% compared
to DFlexL1.

The primary benefit of this optimization is that a smaller
amount of data with low to no reuse is inserted into the L2.
We observed two types of regions in the benchmarks that can
exploit this benefit. The first type are the ones that are read
and then overwritten. This benefited fluidanimate and FFT
because their algorithms frequently read and then write the
same address, by reducing Write waste. The second type of
region read only once in the current phase. FFT, radix can
benefit from this because of their matrix operations which
do not reuse source arrays, while streaming access pattern of
kD-tree also benefits from bypassing.

The secondary benefit of bypassing data is that it increases
the probability of L2 reuse for data that is not bypassed and
that is relatively large and long-lived. For FFT, radix and kD-
tree, bypassing created more space in the L2 for the other data
structures, resulting in improved cache hit and reuse rates for
them.

Figure 4b shows the waste reduction corresponding to
the result in Figure 3a for the four benchmarks. Comparing
with DFlexL2, DBypL2 reduces Evict and Write waste by
87.8% on average for fluidanimate, LU, FFT and kD-tree,
and up to 100% for FFT and radix. FFT and radix do not
incur Write or Evict waste any more by bypassing the L2
for the read-once data and the frequently overwritten data as
described above. This shows the value of the optimization
for applications with low L2 cache reuse. The streaming
access pattern of kD-tree also benefits significantly from
“L2 Bypass Response” by reducing the Evict waste in the
L2, while the remaining Evict waste is from the randomly
accessed array, which makes it virtually impossible to predict
the reusability of data. For fluidanimate, Write waste from
overwriting the data without being used is entirely eliminated.
The remaining Evict waste is due to the unpredictable L2
reuse in fluidanimate.

2) Store Traffic: Figure 3b shows that DBypL2 suc-
cessfully eliminates the “Resp To L2 Waste” along with
“Resp To L2 Used” traffic for all benchmarks compared to
DeNovo or DFlexL1. The improvement is brought out by the
“Write Validate” optimization in DV alidateL2 protocol as
described in Section IV. While the MESI protocols suffer
from the waste in the store traffic with fetch-on-write write
policy as they maintain coherence at cache-line granularity,
DeNovo can exploit write-validate write policy for the L1
and L2 caches to eliminate such waste.

Figure 4b shows that DV alidateL2 reduces the waste for
fluidanimate, FFT and radix by 57.9% on average compared
to DeNovo. The fetch-on-write write policy is particularly
wasteful for benchmarks where either a large amount of
data is overwritten or a large amount of spatial data goes

6



0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  
110%	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

M
ES
I	
  

De
N
ov
o	
  

DF
le
xL
1	
  

DV
al
id
at
eL
2	
  

DF
le
xL
2	
  

DB
yp
L2
	
  

Unevicted	
   Evict	
  Waste	
   Invalidate	
  Waste	
   Write	
  Waste	
   Fetch	
  Waste	
   Used	
  Words	
  

fluidanimate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  LU	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  FFT	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  radix	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Barnes-­‐Hut	
  	
  	
  	
  	
  	
  	
  	
  	
  kD-­‐tree	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(a) Waste Classification at the L1
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(b) Waste Classification at the L2

Fig. 4: Waste breakdown of the words fetched into the L1/L2 caches by the categories presented in Section III. All bars are normalized to
MESI.

unused. As described in Section IV, DV alidateL2 reduces
three types of waste: Evict, Fetch, and Write. The major
contribution of waste at L2 in fluidanimate is Evict waste,
since the space for unused data slots for its objects will
eventually become Evict waste as the entire cache line is
fetched on a write.

With DV alidateL2, the Evict waste in fluidanimate gets
reduced to 22.3% compared to DeNovo. When issuing
a write miss to memory, fetch-on-write write policy will
invariably incur Fetch waste for the critical word. The “Write-
Validate” policy does not fetch the line from memory on
a write miss and hence eliminates any such waste. The
Figure 4b shows that DvalidateL2 completely eliminates
the Fetch waste. Finally, three benchmarks, FFT, radix and
fluidanimate suffer from high Write waste in DeNovo, since
the spatial data brought in is mostly overwritten without
ever being used. Figure 4b shows that DV alidateL2 reduces
Write waste by 10%, 54.4%, and 100% for FFT, radix and
fluidanimate respectively by not bringing the data to be
wasted. Interesting to note that the remaining Write waste is
later eliminated by DBypL2 for the same benchmark, which
let read misses to bypass the L2 and not bring in potentially
wasteful data to begin with.

Higher store control traffic in DeNovo protocols: We notice
that DeNovo protocols show higher store control traffic than
MESI for FFT, radix, Barnes-Hut, and kD-tree. This increase
is the result of two design decisions: (1) the lack of an
Exclusive state in DeNovo, and (2) DeNovo write-combining
not being able to combine all registration requests for a single
cache line into a single request.

In MESI, the Exclusive state allows the cache to silently
transition to the Modified state on a write, without requiring
any extra messages. This silent transition helps in applications
like FFT, Barnes-Hut, and kD-tree where many lines have no
other sharers and the lines are read before being written. As
DeNovo lacks a similar state, it cannot take advantage of such
application behavior and must issue at least one registration
request. Secondly, the inability to batch registration requests
with the write-combining optimization can also greatly in-
crease the amount of store control traffic. If a program writes
to much more different lines in a short period than the write-
combining implementation can handle, as in radix. the cores
have to issue multiple registration requests for the same cache
line, in contrast to the single request by MESI.

LU’s store traffic anomalies: The LU store traffic shows a
couple of oddities: (1) the lack of data traffic for MESI is
a result of the majority of store requests being “Upgrade”

requests to transition from Shared to Modified state. (2)
DeNovo has a much smaller amount of store control traffic
than MESI because many of DeNovo’s registration requests
are combined with writebacks. This is attributed to the access
pattern of LU where the L1 working set size is much larger
than the L1 size in our experiments resulting in evicting lines
soon after writing to them.

3) Writeback Traffic: The “Dirty-Words-Only Writeback”
optimization is effective in reducing writeback traffic for
DeNovo protocols, as seen in Figure 3c. We see that this
optimization applied to L1-to-L2 writebacks (DeNovo and
DFlexL1) eliminates L2 Waste data and when applied to
L2-to-memory writebacks (DV alidateL2 and the rest), elim-
inates Mem Waste data. These two changes reduce writeback
traffic by an average of 15.9% and 21.5% relative to MESI .
It is interesting to note that DeNovo and DFlexL1 protocols
have lower “Mem Waste” traffic than MESI . This is at-
tributed to the extra delay DeNovo has in issuing registration
requests to L2 due to write-combining; as the requests can
be held for up to 10,000 cycles waiting for more requests
to combine, it can cause the lifetime (and the reuse rate) of
some lines in the L2 to increase. For MESI, write requests
are issued immediately to the L2. In addition, DeNovo uses
a non-inclusive L2 cache that helps reduce the number of L1
misses, and therefore, the amount of data replaced to make
room for data re-fetched.

4) Overhead Traffic: MESI requires additional network
messages to maintain coherence compared to DeNovo, which
is categorized as overhead traffic in Figure 2b. These mes-
sages account for 13.6% of MESI’s traffic on average.
For MESI’s overhead traffic, 65.3% is spent on directory
unblock messages, 26.1% for WB control messages (e.g.
clean writebacks), 4.4% on invalidation messages, and 4.3%
on acknowledgments. The baseline DeNovo protocol, on the
other hand, has a negligible amount of protocol overhead for
its only overhead message type, NACKs.

C. Discussion and Future Work

In this section we describe the results of other optimiza-
tions mentioned in Section IV and some future directions for
our work.

MMemL1: In MMemL1, we extend MESI with an op-
timization that is similar to the “Memory Controller to
L1 Transfer” optimization. In a blocking directory imple-
mentation of MESI , all requests for a line undergoing a
transition will be held back or NACKed until the ongoing
transition completes. This requires the L1 caches to send
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Fig. 5: Breakdown of the words fetched from Memory partitioned by
the waste categories presented in Section III. All bars are normalized
to MESI.

“unblock” messages to the directory after the L1 finishes
its transition. Using this property, it is possible to have the
memory controller send the data to the L1 cache first and
then have the L1 forward the data to the L2 as a combined
“unblock+data” message. Taking this one step further, data
that is being fetched from memory on a write does not need to
be forwarded to the L2 because an L1 writeback will always
overwrite this data. Altogether, these changes can reduce
memory stall time and on-chip traffic with little additional
protocol complexity. As a result, this optimization reduces
the total network traffic by an average 6.2% and the execution
time by an average 3.8% compared to MESI .

L2 Request Bypass: With the “L2 Response Bypass” opti-
mization, requests for regions with poor L2 locality and L2
bypassing will often miss in the L2. It would be ideal to
send requests directly from the L1 to the memory controller,
skipping the L2. However, to perform this optimization safely
we need to be sure that none of the words that the L1 receives
in a response and will use are dirty in another cache.

Our approach is to predict whether the data is dirty on-
chip by using two types of Bloom filters. The first type is a
counting Bloom filter that is placed at the L2 caches and is
used to track the addresses of the cache lines in the L2 cache
that have dirty words. The second type of Bloom filter is a
non-counting Bloom filter that is placed at each L1 cache.
The L1 Bloom filters try to conservatively approximate the
state of the L2 caches so it is possible to tell when it is
safe to send requests directly to the memory controller. To
accomplish this we do the following: (1) clear the L1 Bloom
filters at every barrier, (2) copy the L2 Bloom filters into
the L1 Bloom filters after the first request that needs the
filter, and (3) insert the cache line addresses of every L1
writeback into the L1 Bloom filter. Every L1 load miss for
a bypassed region will query the L1 Bloom filter to see if
its line address is present. If it is present, then there may be
dirty data on-chip and the request needs to be sent to the
L2. Otherwise, we know that it is safe to send the request
directly to the memory controller. To populate the L1 Bloom
filters, we make a Bloom filter copy request to the L2 for the
necessary Bloom filter after the first demand miss for that
filter. When the response arrives, it is then unioned with the
current L1 Bloom filter contents.

As we limit ourselves to sending 64 bytes in a single
message, we need to set the maximum size of the Bloom
filter to 64 bytes. To reduce the false positive rate, we place
multiple Bloom filters at each L2. We set the Bloom filter to
be an idealized size to show how effective the technique can
be at reducing request traffic. Specifically, we set each Bloom

filter to have 512 entries and use one H3 hash function. Each
entry is 1 bit for L1 filters and 8 bits for L2 filters. We set
the number of Bloom filters per L2 slice to be 32. Each L1
has Bloom filter storage for all 32∗16 L2 Bloom filters. This
leads to a storage requirement of 32 ∗ 512 ∗ 16 = 32KB per
L1 cache and 32 ∗ 512 ∗ 8 = 16KB per L2 slice, for a total
of 768KB for our 16 tile processor.

This optimization is only applicable to a subset of
memory requests and wherever applicable, only saves one
control sized message compared to DBypL2. Applying this
optimization shows a relatively small average reduction of
5.2% in load traffic for applications with bypassing applied
(fluidanimate, FFT, radix and kD-tree). Improving the accu-
racy of L1 and L2 Bloom filters can allow more requests
to be bypassed, while it may further increase the hardware
overhead. However, this optimization provides additional L2
access energy savings that are not quantified in this paper.
Quantifying energy benefits of this optimization is part of
our future work.

Memory Waste: The graph in Figure 5 shows the effec-
tiveness of all the optimizations in reducing the number of
words that need to be fetched from memory. Relative to
MESI , DBypL2 reduces the number of words fetched by
7.7% (or 36.9% if Excess Waste is not included). The benefits
of DV alidateL2 and DBypL2 are straightforward as their
main focus is to reduce the number of cache lines that need
to be fetched from off-chip. The increase in memory traffic
for protocols with the “L2 Flex” optimization (DFlexL2 and
DBypL2) in some of the applications is caused by the impact
that our lack of fine-grained DRAM support has on memory
traffic. This results in large Excess waste, roughly 60.3%
and 66.1% of Barnes-Hut and kD-tree’s network traffic. This
waste is caused by either change of fields that are used from
phase to phase (entire cache-line is re-fetched from memory
in the new phase) or useful data spanning multiple cache
lines does not fit into a single response message (resulting
in additional requests to memory). The Excess traffic can be
reduced if we can incorporate a more sophisticated memory
system into our evaluation that supports partial reads similar
to the one described in [32] and is part of our future work.

VII. RELATED WORK

In this section, we highlight some of the alternative
optimizations that have been proposed towards reducing on-
chip network traffic waste. First, we describe alternative
MESI-based approaches whose benefits are similar to that of
Flex optimization. Next, we describe alternative hardware-
only approaches to our “L2 Response Bypass” optimization
that have been used to improve L2 reuse. Finally, we list
several optimizations that target other types of inefficiencies
in the memory hierarchy which are orthogonal to our work.

The main focus of our Flex optimization is to reduce
the number of useless words that are returned in response
to a cache miss. Others have targeted this form of traffic
waste through a variety of hardware and software means.
Within hardware-only approaches, previous works [20], [5],
[24], [27] have tackled this problem by using predictors that
track which parts of a cache line are used before eviction,
and would optimistically fetch just those parts on the next
cache miss. For these approaches they use a combination of
the PC and the cache line offset to index into the predictor
table. These approaches are as effective as Flex at reducing
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the number of unused words, but generally are unable to
provide the same prefetching benefits that Flex can provide.
Yoon, et al. [32] used the predictor in [5] to reduce both on-
chip and off-chip network traffic by adding DRAM support
for partial reads and writes. To reduce the impact of partial
reads on DRAM throughput and energy, they fetch the entire
line when more than half of the line was to be fetched from
memory. For future research, addressing the drawbacks in the
method proposed by Yoon, et al. [32] may help improve our
optimizations to further reduce the amount of data movement.

Other software-enabled approaches similar to Flex in-
clude [12], [1]. These approaches used annotations made by
the programmer or compiler to fetch either a big or small
cache lines. Small lines were shown to be useful for data
that is accessed with large strides, indirectly, or involves
pointer chasing. In contrast, the Flex optimization can do
better than these approaches as it not only fetches just the
“useful” portions of a cache line but also prefetches “useful”
data from other cache lines.

The focus of our “L2 Response Bypass” optimization
is to reduce the number of cache lines with low or no
reuse that are placed into the L2. Previous hardware-only
approaches, such as those in [2], [8], [16], [22], use hardware
predictors that correlate access history or trip counters to the
usefulness of caching a block at the different cache levels.
These predictors can be used to prevent lines with no reuse
from being inserted, and they can also remove a line when it
is predicted to become dead. These approaches may have
better adaptability but come at an additional cost to the
hardware. Our “L2 Response Bypass” optimization differs
by just exploiting software information to determine which
regions of data should bypass the L2. It does not need support
for hardware predictors.

There have also been efficient instructions proposed for
uncacheable data; e.g., an Intel SSE4 instruction, MOVNT-
DQA (Load Double Quadword Non-Temporal Aligned Hint),
is used for loading streaming data from Uncacheable Write
Combining (USWC) memory [11]. The behavior of such
instructions resemble that of our “L2 Response Bypass”
optimization. But these instructions are for uncacheable data,
so they do not have to deal with the coherence protocol. Also
the data cannot be cached in the L1 and thus any benefits of
temporal locality are lost.

There is a vast body of work that focuses on other types
of inefficiencies in the memory hierarchy such as better
placement of data [10], better usage of cache space for
reuse data [26], [21], [33], and replacement policies [25],
[28] that also have some effect on the amount of on-chip
network traffic. All of these optimizations reduce traffic that
we classified as Used and hence are orthogonal to our work
as we specifically focus on ways to reduce on-chip network
traffic waste.

VIII. CONCLUSION

This paper focuses on reducing the on-chip network traffic
by analyzing sources of wasted data movement and identify-
ing optimizations that reduce such waste in the network. The
sources of waste in commonly used directory-based MESI
protocols originate not only from applications, such as poor
spatial locality and data reuse, but also from the way current
hardware is designed; e.g., false sharing from fixed cache
line granularity transfers. This study determines how effective

different techniques are in reducing wasted data movement
and how much remaining waste there is.

Our evaluation showed that the optimizations explored
in this paper can significantly reduce the wasted network
traffic for the applications with predictable access patterns.
With all the optimizations, we eliminated up to 100% of the
on-chip network traffic waste at L2, and 70.8% on average
compared to DeNovo. These optimizations are simple and
don’t incur intrusive modifications to the hardware. More
importantly, the detailed characterization of the waste in
the paper provides an opportunity to understand how the
optimizations and the waste interact more precisely, and how,
or if, the optimizations can further eliminate the remaining
waste. We believe that this study can work as a useful limits
analysis and guideline that the potential techniques for waste
reduction can rely on.
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