
Appears in Second USENIX Workshop on Hot Topics in Parallelism (HotPar’10)

DeNovo: Rethinking Hardware for Disciplined Parallelism ∗

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Bocchino, Sarita Adve, and Vikram Adve
University of Illinois at Urbana-Champaign

denovo@cs.illinois.edu

Abstract
We believe that future large-scale multicore systems will
require disciplined parallel programming practices, includ-
ing data-race-freedom, deterministic-by-default semantics,
and structured, explicit parallel control and side-effects.
We argue that this software evolution presents far-reaching
opportunities for parallel hardware design to greatly im-
prove complexity, power-efficiency, and performance scal-
ability. The DeNovo project is rethinking hardware design
from the ground up to exploit these opportunities. This
paper presents the broad research agenda of DeNovo, in-
cluding a holistic rethinking of cache coherence, memory
consistency, communication, and cache architecture.

1 Introduction
Achieving the promise of Moore’s law will require har-
nessing increasing amounts of parallelism using multi-
core architectures. Industry experts project over a thou-
sand cores per chip in about a decade [16]. Unfortu-
nately, designing easily programmable large-scale parallel
hardware that provides scalable and power-efficient per-
formance at low-cost remains a major challenge. Cur-
rent designs for large-scale shared-memory systems rely
on directory-based cache coherence protocols for scala-
bility [37], which are extremely complex and inefficient.
Moreover, current memory hierarchies are based on out-
dated organizing principles such as contiguous cache lines
that worked well for dense-array codes but are not well-
suited for modern object-oriented codes and pointer-based
data structures.

On the software side, threads-based shared memory, ar-
guably the most widely used general-purpose parallel pro-
gramming model, is known to be difficult to program, de-
bug, and maintain [36]. Current models are not only con-
ceptually more difficult to understand than the sequential
model (e.g., due to data races and ubiquitous nondetermin-
ism), but require abandoning decades of advances at the
core of robust sequential software engineering practices
(e.g., safety, modularity, and composability).

For both hardware and software, the problem of for-
mally specifying the fundamental property of the memory

∗This work is supported in part by the Intel and Microsoft funded
Universal Parallel Computing Research Center at Illinois.

model or memory consistency model has been surprisingly
challenging. The memory model specifies what values a
shared-memory read may return [4]. After decades of re-
search and vigorous debate, there has finally been a con-
vergence centered on providing sequential consistency for
data-race-free programs [15,39]. The results, however, are
deeply unsatisfactory and have exposed fundamental short-
comings in today’s hardware and software systems [3].
First, safe languages such as Java require precisely defined
behavior even with (unintended) data races – this has made
the Java model incredibly complex [39] (it currently has an
unresolved bug [46]). Second, the software-oblivious evo-
lution of legacy hardware has led to an unnecessary perfor-
mance compromise with simple models – this has forced
a complex supplemental model for C and C++, intended
only for performance-driven experts [15].

We believe the above problems are not inherent to a
shared address space paradigm. Instead, they occur due
to undisciplined programming models that allow the use
of arbitrary reads and writes in implicit and unstructured
communication and synchronization. This results in “wild
shared-memory” behaviors with unintended data races,
non-deterministic executions, and implicit side effects that
make programs hard to understand, debug, and maintain.
The same phenomena result in complex hardware that
must assume that any memory access may trigger commu-
nication, and inefficient hardware that is unable to exploit
communication patterns known to the programmer but ob-
fuscated by the programming model.

Our thesis is that more disciplined programming models
with explicit and structured communication and synchro-
nization can address the above problems in both hardware
and software. Previously, we described a research agenda
for deterministic-by-default languages to provide the disci-
pline needed to address the software programmability [13]
and memory model related issues [3]. This paper describes
a hardware research agenda pursued by the Illinois DeN-
ovo project. DeNovo aims to show that such disciplined
programming models allow far more scalable and power-
efficient hardware at much lower complexity than state-of-
the-art software-oblivious design approaches.

We expect three features in future disciplined parallel
programs: (1) data-race-freedom, and even guaranteed de-
terministic semantics in many cases; (2) structured par-

1

allel control; and (3) explicit specification of the effects
of shared-memory accesses; e.g., which (possibly non-
contiguous) regions of memory will be read or written in a
parallel section (Section 2). We show these features enable
a fundamental rethinking of shared-memory hardware for
superior performance, power efficiency, and complexity, as
follows.

Coherence and Consistency. First, structured paral-
lel control and knowing which memory regions will be
read/written enable a cache to take responsibility for in-
validating its own stale data. Such self-invalidations re-
move the scalability-limiting need for a hardware direc-
tory to track sharer lists and to send invalidations on writes.
Second, data-race-freedom eliminates concurrent conflict-
ing accesses and corresponding transient states in coher-
ence protocols, eliminating a major source of complexity.
Third, since there is no need to track sharers or serialize
conflicts, cache-to-cache transfers can occur without in-
direction through the directory, significantly reducing la-
tency. Fourth, if software guarantees data-race-freedom,
then hardware can easily make strong memory model guar-
antees. The result is much simpler, lower-latency coher-
ence protocols and simple (yet high-performance) consis-
tency models (Section 3.1).

Communication and Storage Layout. A key organiz-
ing principle for memory hierarchies is a cache line, which
is used for address, communication (transfer), and coher-
ence granularity. While this works well for uniprocessors
with dense array codes, it does not naturally extend to mul-
ticores (e.g., it can incur false sharing) or to object-oriented
codes (where a computation phase may access only one
field in a contiguous array of large structs, wasting band-
width and cache storage). Explicit shared-memory effects
allow customizing the address, communication, and coher-
ence granularity around software-specified regions. Such a
reorganization can give much higher efficiency in commu-
nication latency, bandwidth, and cache storage and book-
keeping; e.g., bulk data transfers and cache space usage for
only the needed data (Sections 3.2 and 3.3).

Together, our observations lead to systems that enjoy the
benefits of a global address space along with the efficien-
cies of message passing; e.g., point to point communica-
tion without indirection, bulk transfer of only the required
data, and simple, scalable hardware with clear semantics.

2 DeNovo Research Strategy and Disci-
plined Languages

Future systems will run a mix of disciplined software and
legacy, “wild shared memory” code. We expect, how-
ever, that the latter will be a decreasing fraction for the
reasons described above. There are already a large num-
ber of research and commercial projects developing new
disciplined parallel programming models for determinis-
tic and non-deterministic algorithms [5]; e.g., Ct [24],
CnC [17], Cilk++ [11], Galois [33], SharC [7], Kendo [44],

Prometheus [6], Grace [10], Axum [26], and DPJ [14].
Most of these, including all but one of the commercial sys-
tems, guarantee the absence of data races for programs that
type-check, satisfying the first requirement of our work im-
mediately. Moreover, most of these also enforce a require-
ment of structured parallel control (e.g., a nested fork join
model, pipelining, etc.), which is much easier to reason
about than arbitrary (unstructured) thread synchronization.

We approach our goal of exploiting disciplined pro-
gramming for hardware in stages. We begin with deter-
ministic codes for three reasons: (1) there is a growing
view that deterministic algorithms will be common, at least
for client-side computing [5]; (2) focusing on these codes
allows us to investigate the “best case,” i.e., the potential
for gains from exploiting strong discipline; and (3) these
investigations will form a basis on which we develop the
extensions needed for other classes of codes. We then in-
vestigate how to extend this system to support disciplined
non-determinism. Finally, we consider legacy software
and programming models. Synchronization mechanisms
are used with all three kinds of codes, but we discuss them
with legacy software because synchronization inherently
involves races.

We take Deterministic Parallel Java (DPJ) [14] as an
exemplar of the emerging class of disciplined languages.
We use it to explore how hardware can take advantage of
data-race-freedom, structured parallel control, and explicit
read and write effects of concurrent tasks. The informa-
tion about side effects of concurrent tasks is also available
in other disciplined languages, but in widely varying (and
sometimes indirect) ways. Once we understand from our
initial study the types of information that is most valuable,
we will explore how it can be extracted from programs in
different languages.

2.1 Deterministic Parallel Java (DPJ)
DPJ is an extension to Java that enforces deterministic-by-
default semantics via compile-time type checking. Using
Java is not essential; similar extensions for C++ are un-
derway. DPJ provides a new type and effect system for
expressing important patterns of deterministic and non-
deterministic parallelism in imperative, object-oriented
programs. Non-deterministic behavior can only be ob-
tained via certain explicit constructs (Section 4). For a
program that does not use such constructs, DPJ guarantees
that if the program is well-typed, any two parallel tasks are
non-interfering, i.e., do not have conflicting accesses.

DPJ’s parallel tasks are iterations of an explicitly par-
allel foreach loop or statements within a cobegin
block; they synchronize through an implicit barrier at the
end of the loop or block. Parallel control flow thus fol-
lows a scoped, nested, fork-join structure, which simpli-
fies the use of explicit coherence actions in DeNovo at
fork/join points. This structure implies an obvious sequen-
tial equivalent of the parallel program (e.g., for replaces

2

foreach), and restricts the result of a parallel execution
to that of the sequential equivalent.

In a DPJ program, the programmer assigns every ob-
ject field or array element to a named “region” and anno-
tates every method with read or write “effects” summariz-
ing the regions read or written by that method. The com-
piler checks that (i) all program operations are type safe in
the region type system; (ii) a method’s effect summaries
are a superset of the actual effects in the method body; and
(iii) that no two parallel statements interfere. The effect
summaries on method interfaces allow all these checks to
be performed without interprocedural analysis.

For DeNovo, the effect information tells the hardware
what fields will be read or written in each parallel “phase”
(foreach or cobegin). This enables efficient software-
controlled coherence mechanisms and powerful communi-
cation management and data layout, discussed next.

3 DeNovo for Deterministic Codes
3.1 Coherence and Consistency
Sequential equivalence for deterministic codes implies a
read should simply return the value of the last conflicting
write before it in the sequential program order. This write
is either from the reader’s own task or from a task in a
previous parallel phase, since there can be no concurrent
conflicting write. In contrast, conventional coherence pro-
tocols, typically based on directories, assume that writes
and reads to the same location can occur concurrently, re-
sulting in significant complexity and inefficiency.

DeNovo eliminates the drawbacks of conventional di-
rectory protocols as follows. For now, assume a single-
word cache line and no data races at this granularity (re-
laxed later). Without loss of generality, assume private,
writeback L1 caches, a shared last-level on-chip L2 cache
inclusive of only the modified lines in L1, a single (multi-
core) processor chip system, and no task-migration.
No directory storage or write invalidation overhead.
In conventional protocols, a write acquires ownership of
a line by invalidating all other copies, to ensure later reads
get the updated value. The directory achieves this by track-
ing all current sharers and invalidating them on a write,
incurring significant storage and invalidation traffic over-
head. DeNovo eliminates these overheads by removing the
need for ownership on a write. Data-race-freedom ensures
there is no other writer or reader for that line in this paral-
lel phase. DeNovo need only ensure that (i) outdated cache
copies are invalidated before the next phase, and (ii) read-
ers in later phases know where to get the new data.

For (i), each cache simply uses the known write ef-
fects of the current phase to invalidate its outdated data
before the next phase begins. The compiler inserts self-
invalidation instructions for each region with these write
effects. Each L1 invalidates its data that belongs to these
regions except ones that it has “touched” in this phase,
since such data are known to be up-to-date. We augment

each line with one “touched” bit for this purpose. For (ii),
DeNovo requires that on a write, a core register itself at
(i.e., inform) the shared L2. The L2 data banks serve as
the registry – they either keep the identity of an L1 that has
the up-to-date data or the data itself. Thus, DeNovo entails
zero overhead for directory (registry) storage.
No transient states. The DeNovo protocol has three
states in the L1 and L2 – registered, valid, and invalid –
with obvious meaning. (The touched bit mentioned above
is local to its cache and irrelevant to external coherence
transactions.) Although textbook descriptions of conven-
tional directory protocols also describe 3 to 5 states (e.g.,
MSI) [30], it is well-known that they contain many hid-
den transient states due to races, making them notoriously
complex and difficult to verify [2]. DeNovo, in contrast,
is a true 3-state protocol with no transient states, since it
assumes race-free software. The only possible races are re-
lated to writebacks, and they can be handled as in unipro-
cessors. We are currently investigating formal verification
to quantify the impact of this significant simplification.
Eliminating indirection. In a conventional protocol,
even misses that are eventually serviced by another cache
(cache-to-cache transfer) must go through the directory, in-
curring an additional latency due to the indirection. Since
DeNovo does not maintain sharer lists, a reader can poten-
tially directly obtain data from a cache that has it, without
informing the registry. Knowledge of which cache may
have the data can either be obtained through hardware pre-
diction or compiler/runtime support using effects informa-
tion. This can be conservative since the request can always
be sent to the registry if the predicted cache does not have
the line.
Hardware regions, an example, and evaluation. A key
research question is how to distinguish regions in hardware
for self-invalidations. Language-level regions are more
fine-grain than may be practical, or needed, in hardware.
The language may need to distinguish fields of each ob-
ject in an array or tree to prove non-interference. Hard-
ware only needs to identify the aggregate set of data that
could be written in a phase, not which core wrote what.
The compiler can thus summarize one or more fields of an
entire array or tree of objects as a single region, dramati-
cally reducing the number of regions for hardware. At the
same time, over-coarsening of regions may lead to con-
servative write effects and unnecessary “collateral” self-
invalidations, requiring the compiler to balance the num-
ber of hardware regions against the precision of effects.
The ideal hardware-software interface through which re-
gion information can be conveyed also remains a research
question (e.g., through memory instructions or data). Re-
gardless of how it is conveyed, the caches need to track the
region information with the data. Section 3.3 proposes a
new cache design that can eliminate this overhead.

Figure 1 illustrates the above concepts. Figure 1(a)
shows a code fragment with parallel phases accessing an

3

class S_type {
X in DeNovo-region ;
Y in DeNovo-region ;
Z in DeNovo-region ;

}
S _type S = new S_type[size];
...
Phase1 writes // DeNovo effect
{

foreach i in 0, size {
S[i].X = …;

}
self_invalidate();

}

Phase2 reads , … { … }

…

(a)

L1 of Core 1
…

…

R X1 V Y1 V Z1

R X2 V Y2 V Z2

R X3 V Y3 V Z3

I X4 V Y4 V Z4

I X5 V Y5 V Z5

I X6 V Y6 V Z6

X1 X2 X3

L1 of Core 2

X4 X5 X6

Direct cache-to-cache

communication in Phase 2

R = Registered

V = Valid

I = Invalid

…

I X1 V Y1 V Z1

I X2 V Y2 V Z2

I X3 V Y3 V Z3

R X4 V Y4 V Z4

R X5 V Y5 V Z5

R X6 V Y6 V Z6

…

Shared L2
…

…

R C1 V Y1 V Z1

R C1 V Y2 V Z2

R C1 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

R C2 V Y6 V Z6

(b)

L1 of Core 1

…

X1 X2 X3

R

X1

X2

X3

I

X4

X5

X6

V Y1

V Y2

V Y3

V Y4

V Y5

V Y6

V Z1

V Z2

V Z3

V Z4

V Z5

V Z6

… …

… … …

(c)

Figure 1: (a) Code with DeNovo regions and self-invalidations, (b) cache state after phase 1 self-invalidations and direct core-to-core
communication at the beginning of phase 2, and (c) region-driven cache layout. Xi represents S[i].X . Ci in L2 cache means the word
is registered with Core i. Initially, all lines in the caches are in valid state.

array, S, of structs with three fields each, X, Y, and Z. The
X (respectively, Y and Z) fields from all array elements
form one DeNovo region. The first phase writes the region
of X and self-invalidates that region at the end. Figure 1(b)
shows, for a two core system, the L1 and L2 cache states
at the end of Phase 1, assuming each core computed one
contiguous half of the array. The computed X fields are
registered and the others are invalid in the L1’s while the
L2 shows all X fields registered to the appropriate cores.

We implemented the DeNovo protocol without the op-
timization to eliminate indirection, using the Wisconsin
GEMS [42] framework. We manually performed re-
gion aggregation and inserted self-invalidations into three
SPLASH-2 applications [50] (barnes, LU, and FFT)
and a complex graphics code [20], covering both pointer-
and array-intensive codes. We found that a small num-
ber (<9) of DeNovo regions minimized collateral invali-
dations in all cases, and the DeNovo L1 cache miss rates
and execution times were almost identical to those of the
GEMS MESI protocol (with single word lines). These re-
sults show that the simplicity of the DeNovo protocol does
not compromise performance, and requires distinguishing
only a few regions. We next address performance.

3.2 Communication Efficiency
Conventionally, cache lines form the basis of address (tag),
communication (transfer), and coherence granularity. So
far, DeNovo operates on single word lines, sacrificing ef-
ficiencies from higher communication and address gran-
ularity for no false sharing. This section describes how
effect information can enable much more flexible (hence
performance- and power-efficient) communication granu-
larity than possible today, while the next section enables
flexible address and coherence granularities.

Our key insight is that any valid or registered data
can be proactively copied to another cache as valid (but
not touched), without involving the registry. When (if)
a demand read accesses this copy, it is marked touched.
A demand read implies there is no concurrent conflicting
write, so it is correct to read this value (valid) and not self-

invalidate at the end of the phase (touched). Thus, when
servicing a demand read, a cache may send an arbitrary
amount of valid data along with the accessed word. Such
a transfer does not incur false sharing or state downgrades
since nobody loses “ownership.”

Using the above insight, DeNovo can easily exploit con-
ventional cache line sizes for communication and address
granularity. A read miss response can always return a
cache line worth of information although some words may
be invalid (marked using per-word coherence state, analo-
gous to sector caches [38]). This reduces address tag over-
head and exploits spatial locality without false sharing.

For higher efficiency than afforded by conventional
cache lines, we observe that often only a few words from
a cache line are used; the rest simply waste bandwidth and
storage. For example, in object-oriented programs, data
structures are often in “array of structs” (AoS) rather than
“struct of arrays” (SoA) layout. AoS is wasteful if only
a few fields of the structs are accessed. An AoS-to-SoA
transformation in software is challenging [21, 31]. DeN-
ovo can exploit effects information to easily achieve the
same goal. Thus, a read miss response can transfer only
the words in regions that will be accessed in this phase.
More generally, the compiler may associate a default gran-
ularity with each region that defines the size of each con-
tiguous region element and the number of such elements
to transfer at a time, to provide a highly flexible bulk com-
munication mechanism.

The above flexible bulk transfers can occur between a
producer and consumer without registry indirection, and
can be either producer- or consumer-initiated. The net ef-
fect is that of seamlessly integrated message-passing-like
interactions, with corresponding efficiencies where appli-
cable. Figure 1(b) illustrates these concepts for our exam-
ple, showing direct communication between cores, trans-
ferring only the region for X.

3.3 Storage Efficiency
DeNovo’s address granularity is still a contiguous cache
line. Thus, even if a read returns only the parts of

4

the line(s) that will be used, the cache must allocate
(invalid and wasted) space for the rest of the line(s). We
use region/effect information for a more efficient storage
layout, with flexible address and coherence granularity.

We first use DeNovo’s aggregated regions to control
main memory layout in software. The key idea is to lay
out a region holding a field of a data structure in strided
fashion (e.g., by allocating all elements of the data struc-
ture from a contiguous memory pool [34]), to enable regu-
lar addressing. For cache layout, we can now partition the
cache into multiple banks corresponding to different aggre-
gated regions. Regions accessed together in a phase should
be aggregated together in the cache and form the basis for
address and transfer granularity. Regions that have similar
sharing behavior in a phase should form the basis for co-
herence granularity. These granularities can be further in-
creased by incorporating task granularity information from
the scheduler, further amortizing state maintenance over-
head. Overall, region-based cache layout can significantly
improve cache utilization and state overhead (along with
the previously discussed improved bandwidth, latency, and
flexible transfer granularity). Figure 1(c) illustrates these
concepts for our example. It shows separate banks for the
regions of X, Y, and Z. Each bank merges coherence states
of the fields accessed together as shown.

4 Nondeterministic Codes
The key difference between nondeterministic and deter-
ministic codes is that the former may incur conflicting
accesses between concurrent tasks, while the latter pro-
hibit them. These accesses usually need to be synchro-
nized using atomicity primitives, which also ensures data-
race-freedom. While the specific mechanisms and seman-
tics for disciplined nondeterminism are still a matter of re-
search, we believe some basic principles are required [12]:
(1) a guarantee of data-race-freedom by enclosing concur-
rent conflicting accesses within atomic sections; (2) strong
isolation between nondeterministic and deterministic con-
structs; and (3) serializability for deterministic and nonde-
terministic constructs to simplify reasoning.

DPJ uses atomic regions and atomic effects as one way
to give these guarantees of data-race-freedom, isolation,
and serializability [12], and we use them initially to de-
velop support for disciplined nondeterminism in DeNovo.
We then discuss how we aim to support less disciplined
forms of nondeterminism.

To support atomic sections, DeNovo requires mecha-
nisms to (i) ensure their isolation, and (ii) return appro-
priate values for their reads. For (i), a naive approach is
to use a single lock for each atomic section, which can
be efficiently implemented in DeNovo’s simplified coher-
ence model by using queue-based locks [25]. Two opti-
mizations are to assign different lock variables to atomic
sections that have non-overlapping atomic effects and to
enable speculative execution of atomic sections. For (ii),

a naive solution is to self-invalidate at the start of each
atomic section. Two optimizations are to not invalidate
data that have non-conflicting effects, and if the core al-
ready owns the lock.

There are also likely to be several sources of less disci-
plined codes. First, low-level libraries may use wait-free
or other “roll-your-own” synchronization. We can treat
the regular, but synchronizing, reads and writes in these
codes as singleton atomic sections, a discipline similar to
DPJ. However, there is little understanding of the access
patterns in these codes and how hardware can best sup-
port them. We are studying several such codes for a better
understanding. Second, we must correctly execute legacy
software. One solution is to make a small cluster of the
chip fully coherent to execute non-compliant software. An
alternative may be to use software distributed shared mem-
ory techniques. These solutions do not exploit the DeNovo
optimizations, but should be close to what can be achieved
through incremental improvements over today’s systems,
with much lower overall hardware complexity.

Finally, all software must use (racing) synchronization
operations, which the DeNovo coherence protocol does not
support directly. We propose to implement minimal hard-
ware support for key synchronization primitives, including
(queue-based) locks [25], sender-initiated cache-to-cache
transfers or “remote writes” [1]) for flag synchronization,
and some native support for barriers. More sophisticated
mechanisms can be built on top of these primitives.

5 Related Work and Summary
There is a vast body of work on improving shared-
memory hierarchy, including coherence protocol optimiza-
tions (e.g., [35, 40, 41, 45, 48]), relaxed consistency mod-
els [22, 23], using coarse-grained (multiple contiguous
cache lines, also referred to as regions) cache state tracking
(e.g., [18, 43, 51]), smart spatial and temporal prefetching
(e.g., [47,49]), bulk transfers (e.g., [8,19,28,29], producer-
initiated communication [1, 32]), recent work specifically
for multicore hierarchies (e.g., [9, 27, 52]), and more.

The starting point for our work is that current shared-
memory programming models are unsustainable for mass-
scale parallel programming, motivating more disciplined
shared-memory models. With such models as drivers,
we rethink the entire memory hierarchy design from the
ground up. To our knowledge, our proposed vision is the
first that views the cache hierarchy design in such a holis-
tic way, and co-designed together with a disciplined soft-
ware model. This view allows new ideas (e.g., flexible
cache partitions based on software specified regions), sim-
pler and more efficient incarnations of previous ideas (e.g.,
use of bulk transfer, but with flexible software-driven gran-
ularity and with no directory serialization), and a synergis-
tic collection of previously proposed optimizations. The
result is a simpler system design that is more performance-
and power-efficient and yet more programmable.

5

References

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An
Evaluation of Fine-Grain Producer-Initiated Communica-
tion in Cache-Coherent Multiprocessors. In Proceedings
of the 3rd International Symposium on High Performance
Computer Architecture, 1997.

[2] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Lit-
tle Time: Verifying Memory Coherence in the Cray X1. In
Proceedings of the 17th International Symposium on Paral-
lel and Distributed Processing, 2003.

[3] S. V. Adve and H.-J. Boehm. Memory Models: A Case
for Rethinking Parallel Languages and Hardware. To ap-
pear in the Communications of the ACM. Author’s version
is available at http://denovo.cs.illinois.edu/Pubs/10-cacm-
memory-models.pdf.

[4] S. V. Adve and K. Gharachorloo. Shared Memory Consis-
tency Models: A Tutorial. IEEE Computer, Special Issue
on Shared-Memory Multiprocessing, pages 66–76, Decem-
ber 1996.

[5] V. S. Adve and L. Ceze. Workshop on Deterministic Multi-
processing and Parallel Programming, University of Wash-
ington, Nov 2009.

[6] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization
Sets: A Dynamic Dependence-based Parallel Execution
Model. In Proceedings of the 14th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming,
pages 85–96, 2009.

[7] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC:
Checking Data Sharing Strategies for Multithreaded C. In
Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
149–158, 2008.

[8] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Stein-
berg, and K. Yelick. Empirical Evaluation of the CRAY-
T3D: A Compiler Perspective. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages
320–331, June 1995.

[9] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Mar-
tinez. Scavenger: A New Last Level Cache Architecture
with Global Block Priority. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, pages 421–432, 2007.

[10] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++. In Proceeding of
the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems, Languages, and Applications, pages
81–96, 2009.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: An Efficient Mul-
tithreaded Runtime System. In Proceeding of the 5th ACM
SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, pages 207–216, 1995.

[12] R. L. Bocchino, S. Heumann, N. Honarmand, S. Adve,
V. Adve, A. Welc, T. Shpeisman, and Y. Ni. Safe Nonde-
terminism in a Deterministic-by-Default Parallel Language.
Technical report, University of Illinois, 2010. Available at
http://dpj.cs.uiuc.edu.

[13] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default.
In First USENIX Workshop on Hot Topics in Parallelism,
2009.

[14] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System
for Deterministic Parallel Java. In Proc. 24th ACM SIG-
PLAN Conference on Object Oriented Programming, Sys-
tems, Languages, and Applications, pages 97–116, 2009.

[15] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 68–78, 2008.

[16] S. Borkar. Major Challenges to Achieve Exascale Perfor-
mance. Salishan Conference on High-Speed Computing,
2009.

[17] Z. Budimlic, A. Chandramowlishwaran, K. Knobe,
G. Lowney, V. Sarkar, and L. Treggiari. Multi-core Im-
plementations of the Concurrent Collections Programming
Model. In the 14th International Workshop on Compilers
for Parallel Computers, January 2009.

[18] J. Cantin, M. Lipasti, and J. Smith. Improving Multiproces-
sor Performance with Coarse-Grain Coherence Tracking. In
Proceedings of the 32nd Annual International Symposium
on Computer Architecture, pages 246–257, June 2005.

[19] R. Chandra, K. Gharachorloo, V. Soundararajan, and
A. Gupta. Performance Evaluation of Hybrid Hardware and
Software Distributed Shared Memory Protocols. In Pro-
ceedings of the 8th ACM International Conference on Su-
percomputing, Manchester, England, July 1994.

[20] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino,
S. V. Adve, and J. C. Hart. Parallel SAH k-D Tree Con-
struction. Submitted for publication. Also available as a
technical report (http://hdl.handle.net/2142/13798), 2010.

[21] S. Curial, P. Zhao, J. Amaral, Y. Gao, S. Cui, R. Silvera, and
R. Archambault. MPADS: Memory-Pooling-Assisted Data
Splitting. In Proceedings of the 7th International Sympo-
sium on Memory Management, pages 101–110, 2008.

[22] M. Dubois, J. C. Wang, L. A. Barroso, K. Lee, and Y.-S.
Chen. Delayed Consistency and its Effects on the Miss
Rate of Parallel Programs. In Proceedings of the ACM/IEEE
Conference on Supercomputing, pages 197–206, 1991.

[23] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, May 1990.

[24] A. Ghuloum et al. Ct: A Flexible Parallel Programming
Model for Tera-Scale Architectures. Intel White Paper,
2007.

[25] J. R. Goodman, M. K. Vernon, and P. J. Woest. Effi-
cient Synchronization Primitives for Large-Scale Cache-
Coherent Multiprocessors. In Proc. 3rd International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 64–75, 1989.

6

[26] N. Gustafsson. Axum: Language Overview. Microsoft
Language Specification, 2009.

[27] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Aila-
maki. Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. In Proceedings of the
36th Annual International Symposium on Computer Archi-
tecture, pages 184–195, 2009.

[28] K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki,
N. Imamura, T. Shimizu, H. Ishihata, and T. Shindo.
AP1000+: Architectural Support of PUT/GET Interface for
Parallelizing Compiler. In Proc. 6th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 196–207, 1994.

[29] J. Heinlein, K. Gharachorloo, R. P. Bosch, Jr., M. Rosen-
blum, and A. Gupta. Coherent Block Data Transfer in the
FLASH Multiprocessor. In Proc. 11th International Sym-
posium on Parallel Processing, pages 18–27, 1997.

[30] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, fourth
edition, 2007.

[31] T. Jeremiassen and S. J. Eggers. Reducing False Sharing
on Shared Memory Multiprocessors through Compile Time
Data Transformations. In Proceedings of the 5th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, pages 179–188, 1994.

[32] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas.
Data Forwarding in Scalable Shared-Memory Multiproces-
sors. In Proceedings of the 9th International Conference on
Supercomputing, pages 255–264, 1995.

[33] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. Chew. Optimistic Parallelism Requires Ab-
stractions. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 211–222, 2007.

[34] C. Lattner and V. Adve. Automatic Pool Allocation: Im-
proving Performance by Controlling Data Structure Layout
in the Heap. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, 2005.

[35] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multi-
processors. In Proceedings of the 22nd annual Interna-
tional Symposium on Computer Architecture, pages 48–59,
Jun 1995.

[36] E. A. Lee. The Problem with Threads. IEEE Computer,
39(5):33–42, May 2006.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Pro-
tocol for the DASH Multiprocessor. In Proc. 17th Annual
International Symposium on Computer Architecture, 1990.

[38] J. S. Liptay. Structural Aspects of the System/360 Model
85, Part II: The Cache. IBM Systems Journal, 7:15 – 21,
1968.

[39] J. Manson, W. Pugh, and S. V. Adve. The Java Mem-
ory Model. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 2005.

[40] M. M. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood. Using Destination-Set Prediction to Improve
the Latency/Bandwidth Tradeoff in Shared-Memory Multi-
processors. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

[41] M. M. Martin, M. D. Hill, and D. A. Wood. Token Coher-
ence: Decoupling Performance and Correctness. In Pro-
ceedings of the 30th Annual International Symposium on
Computer Architecture, pages 182–193, June 2003.

[42] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. SIGARCH
Computer Architecture News, 33(4):92–99, 2005.

[43] A. Moshovos. RegionScout: Exploiting Coarse Grain Shar-
ing in Snoop-Based Coherence. In Proceedings of the 32nd
Annual International Symposium on Computer Architec-
ture, pages 234–245, June 2005.

[44] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Ef-
ficient Deterministic Multithreading in Software. In Pro-
ceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 97–108, 2009.

[45] A. Raghavan, C. Blundell, and M. M. K. Martin. Token
Tenure: PATCHing Token Counting using Directory-Based
Cache Coherence. In Proc. 41st IEEE/ACM International
Symposium on Microarchitecture, pages 47–58, 2008.

[46] J. Ševčı́k and D. Aspinall. On Validity of Program Trans-
formations in the Java Memory Model. In Proceedings
of European Conference on Object-Oriented Programming,
pages 27–51, 2008.

[47] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial Memory Streaming. In Proceedings
of the 33rd Annual International Symposium on Computer
Architecture, pages 252–263, 2006.

[48] K. Strauss, X. Shen, and J. Torrellas. Flexible Snooping:
Adaptive Forwarding and Filtering of Snoops in Embedded-
Ring Multiprocessors. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture, pages
327–338, 2006.

[49] T. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Aila-
maki, and B. Falsafi. Temporal Streaming of Shared Mem-
ory. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, pages 222–233, 2005.

[50] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, 1995.

[51] J. Zebchuk, E. Safi, and A. Moshovos. A Framework for
Coarse-Grain Optimizations in the On-Chip Memory Hier-
archy. In Proc. 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 314–327, 2007.

[52] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and
A. Moshovos. A Tagless Coherence Directory. In
Proc. 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009.

7

	Introduction
	DeNovo Research Strategy and Disciplined Languages
	Deterministic Parallel Java (DPJ)

	DeNovo for Deterministic Codes
	Coherence and Consistency
	Communication Efficiency
	Storage Efficiency

	Nondeterministic Codes
	Related Work and Summary

