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Abstract 

The PL.8 compiler accepts multiple source 
languages and produces high quality object code for 
several different machines. The strategy used is to 
first do a simple translation of the source program to a 
low level intermediate language. Global optimization 
and register allocation are then used to improve code 
rather than relying on special case code selection. 

Introduction 

The PL.8 Compiler was developed as part of an 
exploration of the interact ion of computer 
architecture, system design, programming language, 
and compiler techniques. It currently supports two 
source languages, Pascal and PL.8, a P L / I  x~ariant for 
systems programming. Object code is produced for 
for the System/370,  MC68000, 801 (10) and two 
other experimental machines. The role of the compiler 
is to support high leveJ language programming in a 
style which does not require at tention to detailed 
issues of performance, and yet to provide very "good" 
code. The previous experience with using optimizing 
compilers in this way has been discouraging. 
Programmers have had to avoid particular language or 
styles for performance reasons. Furthermore, the need 
to cover the many cases for which good code was 
required caused the compiler to grow until  its size, 
execution cost, or lack of reliability limited further 
progress. In order to avoid this difficulty, and still be 
free to add many new features to the language and its 
compiler, the PL.8 effort followed a strategy of 
dividing compilation into a series of simpler, 
independent problems. 
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The PL.8 compiler has four major components. These 
are: 

Translation - the conversion of the source 
program to an intermediate language (IL). 
This can be thought of as the instruction set of 
a simple abstract machine. 

Optimization - the transformation of the 
intermediate language program to an equivalent 
program with reduced running time or size. 

Register allocation the reduction of the 
register space of the program to that of the 
machine and the assignment of specific machine 
registers. 

Final assembly - the selection of actual target 
machine instructions, and the formatting of the 
compiler output. 

The compiler further partitions optimization 
into as many independent  operations as possible to 
make them more reliable and easier to implement. 
This approach has lead to a compiler which reliably 
produces object code which is generally superior to 
that possible with previous techniques.(7) 

In what follows, we describe the overall 
structure of the PL.8 compiler, with emphasis on the 
theme of separation. We also describe some of the 
optimization and register allocation techniques needed 
to make the approach workable, and with the use of 
an extended example, attempt to provide some insight 
into why the technique works. The bibliography 
indicates some more detailed reports of the specific 
algorithms used.(3,4,5,6,8,9) 

The Intermediate Language 

The IL can be thought of as the assembly 
language for a simple abstract computer. Its semantics 
closely match the computational semantics of the 
target machines. Its integer arithmetic is 32 bit binary 
twos complement, and storage is byte addressed in a 
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32 bit address space. The IL is represented and 
processed as a linear string of such primitive 
operations. It is this code that will be optimized. For 
maximum effect it is necessary to expose all 
instructions that will be executed on the target 
machine. The IL model is thus at a lower level than 
some of the target CPUs. All computation is done in 
registers. Code is generated as if there were no 
storage to register add or similar instructions. Thus 
the source statement: 

x = y + z ;  

might result in: 

L RY,Y 
L RZ,Z 
A RIOO,RY,RZ 
ST RIOO,X 

This has the advantage of permitting 
commoning or code motion of any or all of the 
instructions. For example the load of y might be 
moved out of the loop, while the load of z might be 
eliminated by another load of z in the loop. (For a 
short description of IL, see the Appendix.) 

While the IL is low level, it is more general than 
many computers. For example there are no 
destructive instructions. Add has two operands and a 
result even when compiling to the System/370 or 
MC68000 on which one of the operands of add is 
destroyed. On the other hand there are subtle ways in 
which the target CPU shows through, an example 
being instruction displacements. On the MC68000 the 
range is between -32K and +32K, while on the 
System/370 it is zero through 4K. It is important to 
expose the arithmetic needed to deal with these limits 
to optimization. Thus a load of a variable at 
displacement 5000 on the MC68000 would result in a 
single load instruction, while the System/370 requires: 

AI RIOO,R.X,4096 Base of x + 4k 
L RX,X-4096(RIO0) Load x 

Notice that the fact that the IL reflects some aspects 
of the target machine in no way affects optimization. 
We do machine independent  optimization on an IL 
that is partly machine dependent. 

In one sense the IL is like no existing machine. 
There are an unlimited number of symbolic registers. 
By convention, instructions with the same operands 
always produce their results in the same symbolic 
register. This is done to assist in finding common 
subexpressions. The format of the IL provides for 
only one result of.a computation, a symbolic register.  
Condition codes are ignored at this time. We assume 

that compares produce a symbolic register, which 
contains less than, equal and greater than bits. IL 
branches test these symbolic register bits. The ' IL also 
contains a set of string operators which may produce 
string symbolic register results. These operations are 
subject to the same optimizations as the rest of the IL. 

Translation 

PL.8 t ransla t ion is accomplished by 
conventional techniques. It is done "bottom up", with 
the IL code for each fragment being emitted 
independent  of context. Translat ion avoids special 
cases, but is concerned with the overall computational 
strategy of implementing its source language. For 
example, the PL.8 translator translates the iterative 
do statement 

do i = m to n; 
. . .  

end; 

into the IL equivalent of: 

L3: 

L RIOO,M 
ST RIO0,1 
L RIO2,1 
L RIO5,N 
C RIO4,RIO2,RI05 
BT RIO4,GT,L4 

(loop body) 

L RIO2,1 
AI RIO3,RI02,1 
ST RIO3,1 
L RI02,1 
L RIO5,N 
C RIO4,R102,RI05 
BF RIO4,GT,L3 14: 

The strategy of replicating the loop test is thus 
implemented by translation. The analysis needed to 
take into account what is known about m and n 
(which might be constants or expressions) or 
modifications to i in the loop is left for optimization 
and register allocation. For example, if the code at 
the loop head is found to contain only constant 
operands optimization will eliminate the compare and 
branch, leaving the correct special case for loops with 
constant bounds. 

e 

The example above also indicates that the 
control operations of the IL are simple conditional and 
unconditional branches. The control structure of the 
program is discovered from the IL, source program 
control flow clues having been eliminated. This 
approach simplifies translation and makes optimization 
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independent  of particular source language control 
constructs. 

In addition to avoiding analysis better left to 
optimization, the translator does no register allocation. 
Rather, the translator assumes only that the current 
stack frame is addressable via a register. All other 
address computations are expressed as complete 
follows of the appropriate addressing path starting at 
in the stack frame. For example, to fetch a variable x 
which has been declared to be static external requires: 

L RS,/.STATIC(RAUTO) address of static 
L R.X,.X(RS) address of X 
L RX,X(R.X) X 

PL.8 does not preassign registers to specific values or 
addresses when the program is translated. Rather, if 
any address or value should be assigned to a register 
to get the best performance, this will be discovered by 
the normal mechanisms of optimization and register 
allocation. 

Optimization 

The optimization section of the compiler 
performs a number of independent  transformations. 
Each of these may be performed several times. 
Optimizations are repeated because one may provide 
new opportunities for another, or may introduce new 
code requiring optimization. Dealing with these 
interactions by iteration reduces the complexity of the 
individual transformations much as optimization 
reduces the complexity of translation. This approach 
does require that the format of IL remain invariant 
during all of optimization so that the result of any 
transformation can be the input to any other. 

The most important transformations in the PL.8 
optimizer are: 

Dead Code Elimination - the elimination of 
computations whose results are unused 

Common subexpression elimination the 
elimination of a computation whose result is still 
available for use because of a previous 
execution of the same or an equivalent 
computation (sometimes called "eommoning" in 
what follows.) 

Code motion - the moving of computations to a 
place in the program that results in faster 
execution. 

Constant  expression evaluation - the compile 
time evaluation of operations whose operands 
become known. 
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Strength reduction - the recognition of iterative 
variables which appear in products, and the 
replacement of the products with other iterative 
variables. (Note that translation has expanded 
all addressing, including array indexing, into the 
implied arithmetic computations. Thus array 
references indexed by do indexes will be 
processed by this optimization.) 

Value numbering - a more powerful form of 
common subexpression elimination which can 
take into account the effects of assignment. 
Value numbering works over extended basic 
blocks, while common subexpression elimination 
operates globally. For example: 

Source IL 

x=a+b ; L RA,A 
L RB,B 
A RAB,RA,RB 
ST RAB,X 

y=a ST RA,Y 
a=w L RW,W 

ST RW,A 
z=y+b ST RAB,Z 

The computation y + b  is the same as a + b  before 
the variable a was altered. 

Dead store elimination - much like dead code 
elimination, but applied to stored values rather 
than the results of expressions. 

Straightening - the elimination of unnecessary 
branches by combining successive basic blocks 
which are uncondit ionally connected into a 
single block. 

Trap elimination - the recognition of certain 
cases in which tests for out of bounds values 
can be moved from loops by appropriately 
modifying the loop termination test(9). 

Reassociat ion - the rear rangement  of 
expressions within loops to gather together all 
the loop constant values. For example, if an 
expression has the form: 

(loop varying+loop constant l )+ loop  constant2 

none of the computation can be moved out of 
the loop. By reassoci~.ting the expression as: 

(loop constant l  +loop constant2)+loop varying, 

an add can be moved from the loop. 



All these transformations (and others) operate 
pervasively on an IL program in which all 
computations are exposed. Arithmetic leading to an 
address value is treated no differently from that 
leading to a program result. Conditional expressions 
introduced to check array bounds violations are 
treated no differently from those that implement 
source language loop constructs or those written by 
the programmer. Thus, each transformation is in 
practice well tested and is applied often to every 
program that is compiled. There is little in 
optimization which can long go untried because the 
special case it represents is unusual. 

In addition, the independence of the 
transformations simplifies and at the same time 
improves each of them. As an example, code motion 
is in fact a complex operation. A computation in a 
loop must be found which can be done outside the 
loop instead. Then, the computation must be removed 
and placed outside. This analysis is subject to many 
e r r o r s w h i c h  could damage the program. Our 
approach is to replace motion with insertion. Once 
analysis determines that code should be moved, the 
code is in faet just copied to t h e  target of the move. 
This insertion i tself  can do no harm to the program. 
Later, common subexpression elimination will 
eliminate the in loop version of the computation. 
Thus, the correctness of code motion is almost assured 
by the correctness of common subexpression 
elimination. Many transformations are realized as 
simple modifications followed by "bread and butter" 
reoptimization. 

Operation Expansion 

In some instances it is better to optimize 
complex operations and then expand them. After the 
expansion, optimization is needed again to deal with 
the newly exposed operations. The max and min 
functions are examples of this. Max and min are 
implemented by compare and branch logic on most 
architectures. Our analysis is incapable of recognizing 
that such a computation is in fact a pure function 
which can be eliminated if redundant. Thus, max and 
min operators are introduced into the IL. These 
operators can be eliminated or moved. Part way 
through optimization these higher level operations are 
expanded. Thus: 

MAX RX,RA,RB 

becomes: 

L: 

MR RX,RA move 
C RIOO,RA,RB 
BF RIOO,LT,L 
MR RX,RB move 

Appropriate boolean expressions are also expanded 
into compares and branches at this poin t . This permits 
boolean expressions or their components to be 
eliminated and moved out of loops, while still 
performing short circuit evaluation (anchor pointing). 

During the expansion portion of optimization, 
the specific machine register requirements of 
subroutine and library linkage are introduced. These 
have been suppressed because, like control flow, they 
make it difficult to recognize opportunities for 
optimization. For example, on an experimental 
machine that has no multiply instruction x*y is initially 
expressed by: 

MULT RIOO,RX,RY 

Optimization can move and common this instruction, 
while the use of real registers after expansion makes it 
harder to optimize. After expansion, the operation 
becomes: 

MR R2,RX 
MR R3,RY 
CALL R2,MULT(R2,R3) 
MR RIOO,R2 

(R2 and R3 denote those actual machine registers in 
the IL.) In the spirit of separation of analysis, register 
requirements are introduced locally. Note that values 
are moved into the specific registers just .before use, 
and out of the specific registers immediately when 
produced. No attempt to propagate these register 
constraints through the program is made until register 
allocation is performed, at which time all such 
requirements are treated uniformly, regardless of 
origin. 

Analysis for Optimization 

So far, we have viewed optimization as a 
collection of program transformations. In fact, data 
gathering and global analysis is necessary to support 
these transformations (3). PL.8's strategy for 
maintaining correct global information is to recompute 
the information when a transformation places it in 
doubt. Since much of the cost of optimization is in 
analysis, our design represents a conscious choice of 
simplicity and robustness over potential performance 
improvement. However, our experience with 
optimization is that its cost is not so great that we 
should reconsider this decision. 

Raising the Level of the IL 

Some architectures contain single machine 
operations which are equivalent to a sequence of IL 
operations. To use these instructions, several IL 
operations must be replaced by a single operation. 
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The PL.8 compiler does only a limited amount of such 
analysis. 

For example, storage to register ops replace 
sequences of the form: 

L RX,X 
A RIOO,RY,RX Register to register 

with: 

A RIOO,RY,X Storage to register 

This is only done if the load and add are in the same 
basic block and there are no more uses of RX and RY. 
By waiting until after optimization to insert such ops 
optimization has a chance to eliminate the load 
entirely, or to move it out of a loop even though the 
add must stay in the loop. A similar process inserts 
register to storage instructions on MC68000. 

Register Allocation 

One of the important simplifications of the PL.8 
compiler structure is its dependence on a global 
register allocator. In summary, the register allocator 
starts with an IL program which uses an arbitrarily 
large number-of registers. Included in this set are the 
actual haachine registers which where introduced in IL 
expansion. The register allocator collects information 
about the ability of pairs of these "symbolic" registers 
to reside in the same machine register. Two symbolic 
registers (or one and a machine register) interfere if at 
any point in the program they cannot coincide. 
Eventually, the graph whose nodes are registers and 
whose edges are interferences is colored so that nodes 
connected by an edge do not have the same color. 
Consequently, all symbolic registers (nodes) with the 
same color can share the machine register which was 
assigned that color. (6) deals with the treatment of 
programs which do not "color" and thus must "spill", 
as well as describing this process in detail. 

Once the interference graph has been computed 
but prior to assigning registers, it is easy to perform 
certain heuristics or take into account machine 
constraints. In particular, the program is searched for 
indications that allocating two symbolic registers to 
the same real register would be profitable. For 
example, if one register is moved to another, that 
move would disappear if the two values had the same 
assignment. Similarly, if the target machine has 
destructive operations, it is profitable to assign the 
source and target of such operations to the same 
machine register. Given: 

OP RT,RA,RB 

if OP only has a two address form in the target 
architecture and RT and RA do not interfere they 

should be coalesced. An attempt is also made to 
coalesce RB and RT if there is an interference 
between RT and RA and OP is commutative. (Final 
assembly will deal with cases which do not disappear 
by introducing additional register copies.) Coalescing 
can be done without actually preassigning RA and RB. 
Rather, if two registers do not interfere, one can be 
renamed to the other at every appearance without 
changing the program. If one member of the coalesce 
pair is  a machine register, the coalesce becomes a 
pre-assignment. Coalescing with machine registers 
causes computations to use and produce values in the 
specific machine registers required by linkage 
conventions. Interference information allows simple 
checks for the possibility of such pre-assignment. In 
practice, they turn out to work extremely well. 

Some machine peculiarities can also be handled 
by manipulating the interference graph used by 
register allocation. For architectures like System/370, 
if a symbolic register is ever used as a base or index 
such a computation is made to interfere with R0, 
which cannot  be used as a base or index on that 
architecture. This insures it will never be assigned t6 
R0. In architectures with typed registers, such as the 
MC68000, which distinguishes address and data 
registers, if an operation can only be performed or 
must be available in one type of register it is made to 
interfere with the other set. There are instances in 
which a computation must be in both sets of registers. 
This is discovered and move registers introduced. 

Scheduling 

On many machines it is profitable to move loads 
of data away from uses, set the condit ion register 
several instructions before a branch etc. Such 
rearrangement of the order of evaluation is called 
scheduling. By doing scheduling before register 
allocation the accidental constraints that register 
allocation would introduce are avoided. After register 
allocation spill code may have been inserted which 
should be scheduled. Therefore scheduling is done 
both before and after register allocation. 

Final Assembly 

The result of register allocation is a program 
still in IL format. However, every register reference is 
now to a machine register. Final assembly is a two 
pass assembler. It computes the actual values of all 
branch locations on the first pass, and assembles the 
final code on the second. Most machine dependence 
is isolated in tables and in final assembly. This 
includes instruction and data formats and such matters 
as the extra code needed to deal with destructive 
operations and program addressability. Final assembly 
produces the object representation of initialized static 
storage, and the external reference information of the 
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program. Optionally, it produces an assembly listing 
and a variable cross reference map. 

Final assembly includes in the object program 
tables which allow run time debugging support. These 
tables provide a map from program location to 
statement number without any executable code to 
record the current statement number. They also 
contain dictionary information for symbolic debugging. 
Final assembly also produces a coded representation 
of the type of every external variable used or defined 
by the program. This type information supports link 
edit and load time type enforcement. 

After register allocation some local fix up is 
possible. This work is also left to final assembly. A 
typical example is the replacement of full with half 
word arithmetic on the MC68000. 

Final  assembly must also deal with condition 
codes. No acceptable way to deal with machine 
condition codes during optimization has been found. 
Thus, the IL does not have condition codes. Rather, 
compare operations are viewed as producing values 
which are used as the operands of other instructions, 
including conditional branches. Register allocation 
assigns these values to the condition register when 
possible. Final assembly performs two local fix ups of 
that code. Whenever such a value is computed or 
used, and its assigned register is not the condition 
register, extra code is generated to capture the 
condition code in the assigned general purpose 
register, or to use the condition code value in the 
general purpose register. In addition, some compares 
with zero are eliminated by a basic block peephole 
when a previous condition code setting operation (e.g. 
subtract) can be seen to make the compare redundant. 

Assembly must also cope with all the remaining 
machine peculiarities. On the System/370 a program 
must be divided into 4K blocks as only one register is 
dedicated to addressing instructions and literals. 
Interblock branches are indirect through a transfer 
vector at the end of the block. Such branches require 
three rather than one instruction, but in practice they 
occur very rarely. On machines with short 
displacement branches, such as the MC68000, final 
assembly determines whether a short branch form can 
be used. 

Assembly inserts appropriate prolog and epilog 
code. This allows a choice of prolog and epilog code 
based on information gathered by optimization and 
register allocation. If all references to the local stack 
frame have been eliminated it is not necessary to 
allocate a frame. This is the case with the final 
System/370 code in Fig. 4. Also the compiler 
arranges to save a n d  restore only those registers that 
linkage conventions require to be saved and that were 
actually altered in the procedure. 

Range Checking 

One of the goals of the PL.8 compiler effort 
was to make the enforcement of language addressing 
rules efficient enough to make such checking the 
normal case. I n  particular, the PL.8 translator 
introduces checks to guarantee that every array or 
offset reference is within its target array or area. To 
support this checking the final object code includes 
sequences which will trap if a bounds error occurs. 
However, the IL models these conditional traps as 
operations which produce results which are then used 
as operands of storage operations. In Fig. 2, the 
instruction TGTI, trap greater than immediate, is used. 
Whenever a subscripted storage reference is made such 
an instruction or instructions is used to guarantee that 
the subscript is within range. TGTI  is a logical 
compare. As X in the example has a low bound of 
zero TGTI verifies that R l l l  is neither negative nor 
too large. (Negative values in twos complement are 
large positive numbers when a logical comparison is 
made.) Because traps are modeled as result producing 
instructions, optimization can move and eliminate 
traps in the same way it does other computations. The 
use of the trap "results" as operands of storage 
reference operations expresses exactly the right 
dependence. The trap must be evaluated before the 
storage reference can occur. If more than one trap is 
required, as would be the case for a reference to a two 
dimensional array, they are joined with a LIST pseudo 
operation, eg. 

TGTI RIOO,RI,IO 
TGTI RIO1,RJ,IO 
LIST R102,R100,RIOI 
L RX,X(RA) TRAP=RIO2 

Global optimization processes TRAP and LIST 
operations. Register allocation ignores the result of 
TRAP and LIST instructions, and final assembly 
ignores the latter entirely. It is possible to eliminate 
checking code. The code generator, zeros the 
TRAP=fie ld  and the dead code elimination process 
eliminates all trap code as well as any computations 
that are only required to compute traps such as loads 
of bound fields from descriptors. The 801 has 
instructions which implement IL traps. However, 
System/370 has no trap instructions and the single 
MC68000 trap instruction is limited to a half word- 
and does not correspond to the IL trap. By expanding 
traps on System/370 and MC68000 to a compare 
followed by a branch to the location of the compare 
+ 1, a trap is implemented in two instructions, and can 
be easily recognized in the interrupt handler for 
diagnostic purposes. (Branches to an odd address 
cause an addressing exception when the branch is 
taken.) 
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The result of this effort  is that  checked code 
from the PL.8 compiler is normally 5 to 10 percent 
slower that unchecked code. This cost allows the use 
of checked code in product ion as well as during 
testing. Because almost all the work of making 
checking code efficient comes from applying the same 
processes which operate  on useful computat ion 
confidence in the correctness of checking code is high. 

Target Machines 

The PL.8 compiler produces object  code for five 
CPU architectures.  All  are twos complement ,  byte  
addressable 32 bit machines, and thus implement IL 
computat ions reasonably well. All  have enough 
registers to support  the separat ion of register 
al location from code generat ion and optimization.  
The PL.8 compiler is writ ten in PL.8. A little over 
half its programs need spill code when compi led  for 
the sixteen register System/370.  If 32 registers are 
available as in the 801, over 95% of the compiler  
routines can register allocate without spill code. 

There is an obvious tension be tween 
optimizat ion,  which increases the time when 
computat ions should be available in registers,  and 
register allocation which must pack these computations 
into a minimal set of registers. If a target machine had 
many fewer than sixteen registers we suspect our 
compiler  would over opt imize and produce  
unacceptable amounts of spill code. Some evidence of 
this is given by our experience with the MC68000,  
which part i t ions its registers into eight address  and 
eight data registers. In practice the register allocator 
runs out of one set while there are still available 
registers in the other. A few complex programs on the 
MC68000 take 1.5 times the code space of 
Sys tem/370  because of excessive register spill code. 
Thus our ability to efficiently support several machines 
is subject  to some architectural  restrictions.  Our 
method o.f compilat ion biases us in favor of regular 
and simple register-register  architectures such as the 
801. 

Compiler Reliability 

One perennial  fear about  opt imizat ion is its 
correctness.  As we have shown above,  careful 
organizat ion of an optimizing compiler  greatly 
simplifies optimization. This organization also tends 
to encourage most bugs in the optimizing algorithms to 
produce catastrophic results which can thus be found 
by simple testing procedures. Our basic procedure is 
to compile and execute a test  bucket  of 150 self 
checking programs every night. The test run produces 
code which is executed on all computers and at various 
levels of optimization. 

In addition, the PL.8 effort  has lead to a 
powerful compiler testing strategy. The PL.8 compiler 
is writ ten in PL.8 and compiles itself. Periodically a 
"fixed point"  is compiled. The current  source is 
completely reeompiled using a compiler  whose 
operat ion is bel ieved to correspond to that  source. 
The object  and listing output  of this compilat ion is 
saved and also used to build a new compiler. This 
new compiler is then used to compile the same source 
again. A bit for bit comparison of the object  and 
listing files from both compiles is then made (ignoring 
dates, t imes, and other  system noise).  If they are 
identical  the new version is made available to our 
users and as a fall back for compiler  development .  
The fixed point  process guarantees that  the official  
compiler will be a reasonable  development  tool  for 
itself. This technique seems to be a very effective 
check of the compiler, especially when coupled with a 
recompile of the runtime l ibrary for each machine. 
PL.8 code is highly portable  from machine to machine 
and it is rare to find a bug on one machine that does 
not occur on all. 

Conclusion 

Global  optimization and register allocation are 
useful tools for simplifying compiler  design. They 
greatly reduce the need for ad hoe methods to obtain 
good object  code and produce higher quality code t.han 
special casing. Compiler  quality is enhanced because 
reliance is p l aced  o r  methods that are separable and 
whose correctness can be studied in general  terms. 
Furthermore the PL.8 compiler has demonstra ted that  
the optimizing algorithms can be applied to a compiler 
that accepts multiple source languages and produces 
code for several different architectures. By applying 
global optimizat ion to checking code, encouragement  
is given to the use of high level, checked languages 
and reliability is further enhanced. 
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Appendix exchange (lines 18-20), the original 19 lines of IL 
code are reduced to four: 

An Example of PL.8 Compilation 

In order to view the effects of optimization on 
an actual program, consider the simple sort in Fig. 1. 
Fig. 2 shows the result of source language translation 
for the the exchange of values in s tatements 18 
through 20. (Fig 3 is the translation of the rest of the 
source program.) The listings can be read as follows: 

1) The source line that gave rise to the code is 
on the left. 

2) Register 15 (ROF)  is the base for the stack 
frame and js the only implicit addressability.  

3) The procedure begins by storing a parameter,  
which is by linkage convention the locat ion of the 
called program's static storage, in the (stack) variable 
named / . s ta t ic .  Static storage contains PL.8 static 
internal variables (Algol own). It also contains 
address constants  to access static external  data  and 
controlled descriptors. 

4) Code generation uses as many "symbolic"  
registers as it needs. Hence R98, R99 etc. These 
registers are not reused except in the case of formally 
identical computations. (Computat ions that apply the 
same opera tor  to the same operands are formally 
identical.) 

5) This example uses the following operations:  

AI Add immediate value 
BF Branch i f  condition b i t  specified = 0 
BT Branch i f  condition b i t  specified = 1 
C Compare two registers, result is 

a symbolic register 
CI Compare a register to an (immediate) 

l i t e ra l  value 
L Load from storage to a register 
LI Load immediate value 
flPYI Mult iply immediate value 
MR Move register 
RET Return to caller 
ST Store 
TGTI Trap i f  register is logical ly greater 

than immediate value 

6) .X is the address constant in static internal to 
access the external variable X. 

7) Trap instructions produce results that  are 
used. 

Note the repetitive nature of the code. It has 
been produced from source language fragments 
without considering context.  

After  code motion and commoning much of the 
"housekeeping" code is out-of  loops and repeti t ion is 
eliminated. (Source language computations will also 
be opt imized but they tend to be of lesser 
importance.)  Considering only the code to do the 

ST RII9,TEMP(ROF) temp=x(j); 
ST RIIS,X(R99, RII7) x ( j )=x ( i ) ;  
L RI32,TEMP(ROF) 
ST RI32,X(R99, R115) x(i)=temp; 

Improvement is still possible but commoning and code 
motion alone have reduced the number of instructions 
executed by more than a factor of four. Dead store 
elimination, load anticipation, and move register (MR) 
coalescing will further improve the code. After  every 
store of the form: 

ST RX ,A 

A move register is inserted as follows: 

ST RX,A 
MR RA,RX 

RA is 
loaded 

the symbolic register  that  would have been 
if a load from A were generated, i.e. 

L RA,A 

After  inserting the MR ops, commoning will eliminate 
any loads of RA that are reached by the move register. 
Dead code elimination removes the MR ops that are 
superfluous. Store elimination may then eliminate the 
store itself and those move registers that remain may 
be eliminated by coalescing registers. The following 
shows the code for the exchange after move registers 
have been inserted. Each instruction which can be 
eliminated is labelled with the optimization which acts 
on it. 

ST Rll9,temp(ROF) store eliminatfon 
MR RI32,RI19 register coalescing 
ST RII8,X(R99,R117) 
MR RI19,R118 dead code 
L R132,temp(ROF) commoning 
ST RI32,X(Rgg,RI15) 
MR RI18,R132 

Fig. 4 shows the final source code for the entire 
procedure. Note that the exchange code from source 
lines 18-20 which was first 19 lines and then four has 
been reduced to: 

ST ROI,X(RO5,ROC) 
ST RO2,X(ROS,ROB) 
MR ROI,R02 

The final move register, Which was inserted, has not 
been eliminated ag it makes it possible to move a load 
of x(i) on a high frequency path out of the loop even 
though x(i) is altered in the loop. Thus, many simple 
steps, operat ing in an independent  but  pervasive 
manner can do as well as the best  special case analysis. 
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Fig. I .  Source Code Example 

11 
21 
3 Ibsort: procedure; 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

declare 
x(0:100) fixed(31)bin static ext, 
t e m p  fixed(31)bin, 
( i ,  j )  fixed(31)bin, 

/* bubble sort in stat ic external storage * /  

do i = 0 to hbound(x)-l; 

do j = i to hbound(x); 

i f  x ( i )>x( j )  then do; 
temp = x ( j ) ;  /*  exchange */  
x ( j )  = x ( i ) ;  /*  x ( i )  and * /  
x ( i )  = temp; /* x ( j ) .  * /  

end do; 

end do j ;  

end do i ;  

end proc bsort; 

18 (1) 
18 
18 
18 
18 
18 
18 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
20 
20 
20 
20 
20 
2O 
2O 

Fig. 2. 

L 
L 
L 
TGTI 
MPYI 
L 
ST 
L 
L 
L 
TGTI 
MPYI 
L 
L 
L 
TGTI 
MPYI 
L 
ST 
L 
L 
L 
TGTI 
MPYI 
L 
ST 

Generated code to do exchange 

R98,/.STATIC(ROF) (2,3) 
Rgg,..X (R98) (6) 
RII I ,J (ROF) (4) 
R116,R111,100 (7) 
RllT,R111,4 
R119,X(R99,R117) TRAP=R116 (7) 
R119,TEMP(ROF) 
Rgs,/.STATIC(ROF) 
R99,.X(R98) 
RIO2,1(ROF) 
RI14,R102,100 
R115,R102,4 
Rg8,/.STATIC(ROF) 
Rgg,.x(Rg8) 
R111,J(ROF) (4) 
RI16,R111,IO0 
RI17,R111,4 
RII8,X(Rgg,R115) TRAP=R114 
RII8,X(R9g,R117) TRAP=R116 
R98,/.STATIC(ROF) 
Rgg,.X(R98) 
RIO2,1(ROF) 
RI14,RI02,100 
R115,R102,4 
RI32,TEMP(ROF) 
RI32,X(Rgg,R115) TRAP=R114 

Fig. 3. 

28 (I) ST 
13 L 
13 L 
13 LI 
13 ST 
13 L 
13 CI 
13 BT 
13 L3: 
15 L 
15 MR 
15 L 
15 L 
15 ST 
15 L 
15 CI 
15 BT 
15 L6: 
17 L 
17 L 
17 L 
17 TGTI 
17 MPYI 
17 L 
17 L 
17 L 
17 L 
17 TGTI 
17 MPYI 
17 L 
17 C 
17 BF 

(Code for 
21Lg: 
15 L 
15 AI 
15 ST 
15 L 
15 CI 
15 BF 
15 L7: 
13 L 
13 AI 
13 ST 
13 L 
13 CI 
13 BF 
13 L4: 
28 RET 

Generated for rest of program 

RI34,/.STATIC(ROF) 
R98,/.STATIC(ROF) 
Rgg,.X(Rg8) 
RIO0,O 
RIOO,I(ROF) 
RIO2,1(ROF) 
RIO4,R102,99 
RIO4,27/GT,L4 

RIO2,1(ROF) 
R108,RI02 
R98,/.STATIC(ROF) 
R99,.X(R98) 
RIO8,J(ROF) 
RIII,J(ROF) 
RI13,R111,100 
R113,27/GT,L7 

R98,/.STATIC(ROF) 
R99,.X(R98) 
RIO2,1(ROF) 
R114,R102,100 
R115,R102,4 
R118,X(R99,R115) 
R98,/.STATIC(ROF) 
Rgg,.x(Rg8) 
RIII,J(ROF) 
RII6,R111,100 
R11'7,R111,4 
RI19,X(Rg9,R117) 
R120,RII8,R119 
R120,27/GT,L9 
lines 18-20) 

RII1,J(ROF) 
R112,R111,I 
RII2,J(ROF) 
R111,J(ROF) 
R113,R111,IO0 
R113,27/GT,L6 

RIO2,1(ROF) 
RIO3,RI02,1 
RIO3,1(ROF) 
RIO2,1(ROF) 
RIO4,RI02,g9 
RIO4,27/GT,L3 

(2,3) 
(6) 

(4) 

(4) 
(7) 

TRAP=R114 (7) 

TRAP=R116 
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I 
I 
I 

131 
I 

151 
151 
151 

171 
171 
171 
191 
201 
201 
211 
151 
151 
151 
151 
131 
131 
131 
131 

I 
I 

Fig. 4. 

L14: 

L13: 

L9: 

L7: 

Final System/370 object code 

ST 
BALR 
L 
LA 
LR 

LR 
C 
BH 
CL 
BH 
L 
SLL 

L 
CR 
BNH 
ST 
ST 
LR 

ROD,52(ROF) 
ROD,O 
RO3,.X(R01) 
R01,0 
RO5,R01 

R04 ,R01 
RO5,=F'400' 
L7 
ROI,=F'IO0' 
*-3 
RO2,X (RO3,R05) 
R04,2 

ROO,X(RO3,R04) 
RO2,RO0 
L9 
RO2,X(RO3,R04) 
ROO,X(RO3,R05) 
RO2,RO0 

< . . . . . . . . .  

PERFORMS 
TGTI 

< . . . .  

A 
C 
BNH 

RO4,=F'4' 
RO4,=F'400' 
L13 

A 
A 
C 
BNH 
L 
BR 

RO5,=F'4' 
ROI,=F'I' 
RO5,=F'396' 
L14 
ROD,52(ROF) 
ROE 
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