
An Overview of the PL.8 Compiler

Marc Auslander and Martin Hopkins

IBM T. J. Watson Research Center
P.O. Box 218

Yorktown Heights, New York 10598

Abstract

The PL.8 compiler accepts multiple source
languages and produces high quality object code for
several different machines. The strategy used is to
first do a simple translation of the source program to a
low level intermediate language. Global optimization
and register allocation are then used to improve code
rather than relying on special case code selection.

Introduction

The PL.8 Compiler was developed as part of an
exploration of the interact ion of computer
architecture, system design, programming language,
and compiler techniques. It currently supports two
source languages, Pascal and PL.8, a P L / I x~ariant for
systems programming. Object code is produced for
for the System/370, MC68000, 801 (10) and two
other experimental machines. The role of the compiler
is to support high leveJ language programming in a
style which does not require at tention to detailed
issues of performance, and yet to provide very "good"
code. The previous experience with using optimizing
compilers in this way has been discouraging.
Programmers have had to avoid particular language or
styles for performance reasons. Furthermore, the need
to cover the many cases for which good code was
required caused the compiler to grow until its size,
execution cost, or lack of reliability limited further
progress. In order to avoid this difficulty, and still be
free to add many new features to the language and its
compiler, the PL.8 effort followed a strategy of
dividing compilation into a series of simpler,
independent problems.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5 /82 /006 /0022 $00.75

The PL.8 compiler has four major components. These
are:

Translation - the conversion of the source
program to an intermediate language (IL).
This can be thought of as the instruction set of
a simple abstract machine.

Optimization - the transformation of the
intermediate language program to an equivalent
program with reduced running time or size.

Register allocation the reduction of the
register space of the program to that of the
machine and the assignment of specific machine
registers.

Final assembly - the selection of actual target
machine instructions, and the formatting of the
compiler output.

The compiler further partitions optimization
into as many independent operations as possible to
make them more reliable and easier to implement.
This approach has lead to a compiler which reliably
produces object code which is generally superior to
that possible with previous techniques.(7)

In what follows, we describe the overall
structure of the PL.8 compiler, with emphasis on the
theme of separation. We also describe some of the
optimization and register allocation techniques needed
to make the approach workable, and with the use of
an extended example, attempt to provide some insight
into why the technique works. The bibliography
indicates some more detailed reports of the specific
algorithms used.(3,4,5,6,8,9)

The Intermediate Language

The IL can be thought of as the assembly
language for a simple abstract computer. Its semantics
closely match the computational semantics of the
target machines. Its integer arithmetic is 32 bit binary
twos complement, and storage is byte addressed in a

22

32 bit address space. The IL is represented and
processed as a linear string of such primitive
operations. It is this code that will be optimized. For
maximum effect it is necessary to expose all
instructions that will be executed on the target
machine. The IL model is thus at a lower level than
some of the target CPUs. All computation is done in
registers. Code is generated as if there were no
storage to register add or similar instructions. Thus
the source statement:

x = y + z ;

might result in:

L RY,Y
L RZ,Z
A RIOO,RY,RZ
ST RIOO,X

This has the advantage of permitting
commoning or code motion of any or all of the
instructions. For example the load of y might be
moved out of the loop, while the load of z might be
eliminated by another load of z in the loop. (For a
short description of IL, see the Appendix.)

While the IL is low level, it is more general than
many computers. For example there are no
destructive instructions. Add has two operands and a
result even when compiling to the System/370 or
MC68000 on which one of the operands of add is
destroyed. On the other hand there are subtle ways in
which the target CPU shows through, an example
being instruction displacements. On the MC68000 the
range is between -32K and +32K, while on the
System/370 it is zero through 4K. It is important to
expose the arithmetic needed to deal with these limits
to optimization. Thus a load of a variable at
displacement 5000 on the MC68000 would result in a
single load instruction, while the System/370 requires:

AI RIOO,R.X,4096 Base of x + 4k
L RX,X-4096(RIO0) Load x

Notice that the fact that the IL reflects some aspects
of the target machine in no way affects optimization.
We do machine independent optimization on an IL
that is partly machine dependent.

In one sense the IL is like no existing machine.
There are an unlimited number of symbolic registers.
By convention, instructions with the same operands
always produce their results in the same symbolic
register. This is done to assist in finding common
subexpressions. The format of the IL provides for
only one result of.a computation, a symbolic register.
Condition codes are ignored at this time. We assume

that compares produce a symbolic register, which
contains less than, equal and greater than bits. IL
branches test these symbolic register bits. The ' IL also
contains a set of string operators which may produce
string symbolic register results. These operations are
subject to the same optimizations as the rest of the IL.

Translation

PL.8 t ransla t ion is accomplished by
conventional techniques. It is done "bottom up", with
the IL code for each fragment being emitted
independent of context. Translat ion avoids special
cases, but is concerned with the overall computational
strategy of implementing its source language. For
example, the PL.8 translator translates the iterative
do statement

do i = m to n;
. . .

end;

into the IL equivalent of:

L3:

L RIOO,M
ST RIO0,1
L RIO2,1
L RIO5,N
C RIO4,RIO2,RI05
BT RIO4,GT,L4

(loop body)

L RIO2,1
AI RIO3,RI02,1
ST RIO3,1
L RI02,1
L RIO5,N
C RIO4,R102,RI05
BF RIO4,GT,L3 14:

The strategy of replicating the loop test is thus
implemented by translation. The analysis needed to
take into account what is known about m and n
(which might be constants or expressions) or
modifications to i in the loop is left for optimization
and register allocation. For example, if the code at
the loop head is found to contain only constant
operands optimization will eliminate the compare and
branch, leaving the correct special case for loops with
constant bounds.

e

The example above also indicates that the
control operations of the IL are simple conditional and
unconditional branches. The control structure of the
program is discovered from the IL, source program
control flow clues having been eliminated. This
approach simplifies translation and makes optimization

25

independent of particular source language control
constructs.

In addition to avoiding analysis better left to
optimization, the translator does no register allocation.
Rather, the translator assumes only that the current
stack frame is addressable via a register. All other
address computations are expressed as complete
follows of the appropriate addressing path starting at
in the stack frame. For example, to fetch a variable x
which has been declared to be static external requires:

L RS,/.STATIC(RAUTO) address of static
L R.X,.X(RS) address of X
L RX,X(R.X) X

PL.8 does not preassign registers to specific values or
addresses when the program is translated. Rather, if
any address or value should be assigned to a register
to get the best performance, this will be discovered by
the normal mechanisms of optimization and register
allocation.

Optimization

The optimization section of the compiler
performs a number of independent transformations.
Each of these may be performed several times.
Optimizations are repeated because one may provide
new opportunities for another, or may introduce new
code requiring optimization. Dealing with these
interactions by iteration reduces the complexity of the
individual transformations much as optimization
reduces the complexity of translation. This approach
does require that the format of IL remain invariant
during all of optimization so that the result of any
transformation can be the input to any other.

The most important transformations in the PL.8
optimizer are:

Dead Code Elimination - the elimination of
computations whose results are unused

Common subexpression elimination the
elimination of a computation whose result is still
available for use because of a previous
execution of the same or an equivalent
computation (sometimes called "eommoning" in
what follows.)

Code motion - the moving of computations to a
place in the program that results in faster
execution.

Constant expression evaluation - the compile
time evaluation of operations whose operands
become known.

24

Strength reduction - the recognition of iterative
variables which appear in products, and the
replacement of the products with other iterative
variables. (Note that translation has expanded
all addressing, including array indexing, into the
implied arithmetic computations. Thus array
references indexed by do indexes will be
processed by this optimization.)

Value numbering - a more powerful form of
common subexpression elimination which can
take into account the effects of assignment.
Value numbering works over extended basic
blocks, while common subexpression elimination
operates globally. For example:

Source IL

x=a+b ; L RA,A
L RB,B
A RAB,RA,RB
ST RAB,X

y=a ST RA,Y
a=w L RW,W

ST RW,A
z=y+b ST RAB,Z

The computation y + b is the same as a + b before
the variable a was altered.

Dead store elimination - much like dead code
elimination, but applied to stored values rather
than the results of expressions.

Straightening - the elimination of unnecessary
branches by combining successive basic blocks
which are uncondit ionally connected into a
single block.

Trap elimination - the recognition of certain
cases in which tests for out of bounds values
can be moved from loops by appropriately
modifying the loop termination test(9).

Reassociat ion - the rear rangement of
expressions within loops to gather together all
the loop constant values. For example, if an
expression has the form:

(loop varying+loop constant l)+ loop constant2

none of the computation can be moved out of
the loop. By reassoci~.ting the expression as:

(loop constant l +loop constant2)+loop varying,

an add can be moved from the loop.

All these transformations (and others) operate
pervasively on an IL program in which all
computations are exposed. Arithmetic leading to an
address value is treated no differently from that
leading to a program result. Conditional expressions
introduced to check array bounds violations are
treated no differently from those that implement
source language loop constructs or those written by
the programmer. Thus, each transformation is in
practice well tested and is applied often to every
program that is compiled. There is little in
optimization which can long go untried because the
special case it represents is unusual.

In addition, the independence of the
transformations simplifies and at the same time
improves each of them. As an example, code motion
is in fact a complex operation. A computation in a
loop must be found which can be done outside the
loop instead. Then, the computation must be removed
and placed outside. This analysis is subject to many
e r r o r s w h i c h could damage the program. Our
approach is to replace motion with insertion. Once
analysis determines that code should be moved, the
code is in faet just copied to t h e target of the move.
This insertion i tself can do no harm to the program.
Later, common subexpression elimination will
eliminate the in loop version of the computation.
Thus, the correctness of code motion is almost assured
by the correctness of common subexpression
elimination. Many transformations are realized as
simple modifications followed by "bread and butter"
reoptimization.

Operation Expansion

In some instances it is better to optimize
complex operations and then expand them. After the
expansion, optimization is needed again to deal with
the newly exposed operations. The max and min
functions are examples of this. Max and min are
implemented by compare and branch logic on most
architectures. Our analysis is incapable of recognizing
that such a computation is in fact a pure function
which can be eliminated if redundant. Thus, max and
min operators are introduced into the IL. These
operators can be eliminated or moved. Part way
through optimization these higher level operations are
expanded. Thus:

MAX RX,RA,RB

becomes:

L:

MR RX,RA move
C RIOO,RA,RB
BF RIOO,LT,L
MR RX,RB move

Appropriate boolean expressions are also expanded
into compares and branches at this poin t . This permits
boolean expressions or their components to be
eliminated and moved out of loops, while still
performing short circuit evaluation (anchor pointing).

During the expansion portion of optimization,
the specific machine register requirements of
subroutine and library linkage are introduced. These
have been suppressed because, like control flow, they
make it difficult to recognize opportunities for
optimization. For example, on an experimental
machine that has no multiply instruction x*y is initially
expressed by:

MULT RIOO,RX,RY

Optimization can move and common this instruction,
while the use of real registers after expansion makes it
harder to optimize. After expansion, the operation
becomes:

MR R2,RX
MR R3,RY
CALL R2,MULT(R2,R3)
MR RIOO,R2

(R2 and R3 denote those actual machine registers in
the IL.) In the spirit of separation of analysis, register
requirements are introduced locally. Note that values
are moved into the specific registers just .before use,
and out of the specific registers immediately when
produced. No attempt to propagate these register
constraints through the program is made until register
allocation is performed, at which time all such
requirements are treated uniformly, regardless of
origin.

Analysis for Optimization

So far, we have viewed optimization as a
collection of program transformations. In fact, data
gathering and global analysis is necessary to support
these transformations (3). PL.8's strategy for
maintaining correct global information is to recompute
the information when a transformation places it in
doubt. Since much of the cost of optimization is in
analysis, our design represents a conscious choice of
simplicity and robustness over potential performance
improvement. However, our experience with
optimization is that its cost is not so great that we
should reconsider this decision.

Raising the Level of the IL

Some architectures contain single machine
operations which are equivalent to a sequence of IL
operations. To use these instructions, several IL
operations must be replaced by a single operation.

25

The PL.8 compiler does only a limited amount of such
analysis.

For example, storage to register ops replace
sequences of the form:

L RX,X
A RIOO,RY,RX Register to register

with:

A RIOO,RY,X Storage to register

This is only done if the load and add are in the same
basic block and there are no more uses of RX and RY.
By waiting until after optimization to insert such ops
optimization has a chance to eliminate the load
entirely, or to move it out of a loop even though the
add must stay in the loop. A similar process inserts
register to storage instructions on MC68000.

Register Allocation

One of the important simplifications of the PL.8
compiler structure is its dependence on a global
register allocator. In summary, the register allocator
starts with an IL program which uses an arbitrarily
large number-of registers. Included in this set are the
actual haachine registers which where introduced in IL
expansion. The register allocator collects information
about the ability of pairs of these "symbolic" registers
to reside in the same machine register. Two symbolic
registers (or one and a machine register) interfere if at
any point in the program they cannot coincide.
Eventually, the graph whose nodes are registers and
whose edges are interferences is colored so that nodes
connected by an edge do not have the same color.
Consequently, all symbolic registers (nodes) with the
same color can share the machine register which was
assigned that color. (6) deals with the treatment of
programs which do not "color" and thus must "spill",
as well as describing this process in detail.

Once the interference graph has been computed
but prior to assigning registers, it is easy to perform
certain heuristics or take into account machine
constraints. In particular, the program is searched for
indications that allocating two symbolic registers to
the same real register would be profitable. For
example, if one register is moved to another, that
move would disappear if the two values had the same
assignment. Similarly, if the target machine has
destructive operations, it is profitable to assign the
source and target of such operations to the same
machine register. Given:

OP RT,RA,RB

if OP only has a two address form in the target
architecture and RT and RA do not interfere they

should be coalesced. An attempt is also made to
coalesce RB and RT if there is an interference
between RT and RA and OP is commutative. (Final
assembly will deal with cases which do not disappear
by introducing additional register copies.) Coalescing
can be done without actually preassigning RA and RB.
Rather, if two registers do not interfere, one can be
renamed to the other at every appearance without
changing the program. If one member of the coalesce
pair is a machine register, the coalesce becomes a
pre-assignment. Coalescing with machine registers
causes computations to use and produce values in the
specific machine registers required by linkage
conventions. Interference information allows simple
checks for the possibility of such pre-assignment. In
practice, they turn out to work extremely well.

Some machine peculiarities can also be handled
by manipulating the interference graph used by
register allocation. For architectures like System/370,
if a symbolic register is ever used as a base or index
such a computation is made to interfere with R0,
which cannot be used as a base or index on that
architecture. This insures it will never be assigned t6
R0. In architectures with typed registers, such as the
MC68000, which distinguishes address and data
registers, if an operation can only be performed or
must be available in one type of register it is made to
interfere with the other set. There are instances in
which a computation must be in both sets of registers.
This is discovered and move registers introduced.

Scheduling

On many machines it is profitable to move loads
of data away from uses, set the condit ion register
several instructions before a branch etc. Such
rearrangement of the order of evaluation is called
scheduling. By doing scheduling before register
allocation the accidental constraints that register
allocation would introduce are avoided. After register
allocation spill code may have been inserted which
should be scheduled. Therefore scheduling is done
both before and after register allocation.

Final Assembly

The result of register allocation is a program
still in IL format. However, every register reference is
now to a machine register. Final assembly is a two
pass assembler. It computes the actual values of all
branch locations on the first pass, and assembles the
final code on the second. Most machine dependence
is isolated in tables and in final assembly. This
includes instruction and data formats and such matters
as the extra code needed to deal with destructive
operations and program addressability. Final assembly
produces the object representation of initialized static
storage, and the external reference information of the

26

program. Optionally, it produces an assembly listing
and a variable cross reference map.

Final assembly includes in the object program
tables which allow run time debugging support. These
tables provide a map from program location to
statement number without any executable code to
record the current statement number. They also
contain dictionary information for symbolic debugging.
Final assembly also produces a coded representation
of the type of every external variable used or defined
by the program. This type information supports link
edit and load time type enforcement.

After register allocation some local fix up is
possible. This work is also left to final assembly. A
typical example is the replacement of full with half
word arithmetic on the MC68000.

Final assembly must also deal with condition
codes. No acceptable way to deal with machine
condition codes during optimization has been found.
Thus, the IL does not have condition codes. Rather,
compare operations are viewed as producing values
which are used as the operands of other instructions,
including conditional branches. Register allocation
assigns these values to the condition register when
possible. Final assembly performs two local fix ups of
that code. Whenever such a value is computed or
used, and its assigned register is not the condition
register, extra code is generated to capture the
condition code in the assigned general purpose
register, or to use the condition code value in the
general purpose register. In addition, some compares
with zero are eliminated by a basic block peephole
when a previous condition code setting operation (e.g.
subtract) can be seen to make the compare redundant.

Assembly must also cope with all the remaining
machine peculiarities. On the System/370 a program
must be divided into 4K blocks as only one register is
dedicated to addressing instructions and literals.
Interblock branches are indirect through a transfer
vector at the end of the block. Such branches require
three rather than one instruction, but in practice they
occur very rarely. On machines with short
displacement branches, such as the MC68000, final
assembly determines whether a short branch form can
be used.

Assembly inserts appropriate prolog and epilog
code. This allows a choice of prolog and epilog code
based on information gathered by optimization and
register allocation. If all references to the local stack
frame have been eliminated it is not necessary to
allocate a frame. This is the case with the final
System/370 code in Fig. 4. Also the compiler
arranges to save a n d restore only those registers that
linkage conventions require to be saved and that were
actually altered in the procedure.

Range Checking

One of the goals of the PL.8 compiler effort
was to make the enforcement of language addressing
rules efficient enough to make such checking the
normal case. I n particular, the PL.8 translator
introduces checks to guarantee that every array or
offset reference is within its target array or area. To
support this checking the final object code includes
sequences which will trap if a bounds error occurs.
However, the IL models these conditional traps as
operations which produce results which are then used
as operands of storage operations. In Fig. 2, the
instruction TGTI, trap greater than immediate, is used.
Whenever a subscripted storage reference is made such
an instruction or instructions is used to guarantee that
the subscript is within range. TGTI is a logical
compare. As X in the example has a low bound of
zero TGTI verifies that R l l l is neither negative nor
too large. (Negative values in twos complement are
large positive numbers when a logical comparison is
made.) Because traps are modeled as result producing
instructions, optimization can move and eliminate
traps in the same way it does other computations. The
use of the trap "results" as operands of storage
reference operations expresses exactly the right
dependence. The trap must be evaluated before the
storage reference can occur. If more than one trap is
required, as would be the case for a reference to a two
dimensional array, they are joined with a LIST pseudo
operation, eg.

TGTI RIOO,RI,IO
TGTI RIO1,RJ,IO
LIST R102,R100,RIOI
L RX,X(RA) TRAP=RIO2

Global optimization processes TRAP and LIST
operations. Register allocation ignores the result of
TRAP and LIST instructions, and final assembly
ignores the latter entirely. It is possible to eliminate
checking code. The code generator, zeros the
TRAP=fie ld and the dead code elimination process
eliminates all trap code as well as any computations
that are only required to compute traps such as loads
of bound fields from descriptors. The 801 has
instructions which implement IL traps. However,
System/370 has no trap instructions and the single
MC68000 trap instruction is limited to a half word-
and does not correspond to the IL trap. By expanding
traps on System/370 and MC68000 to a compare
followed by a branch to the location of the compare
+ 1, a trap is implemented in two instructions, and can
be easily recognized in the interrupt handler for
diagnostic purposes. (Branches to an odd address
cause an addressing exception when the branch is
taken.)

27

The result of this effort is that checked code
from the PL.8 compiler is normally 5 to 10 percent
slower that unchecked code. This cost allows the use
of checked code in product ion as well as during
testing. Because almost all the work of making
checking code efficient comes from applying the same
processes which operate on useful computat ion
confidence in the correctness of checking code is high.

Target Machines

The PL.8 compiler produces object code for five
CPU architectures. All are twos complement , byte
addressable 32 bit machines, and thus implement IL
computat ions reasonably well. All have enough
registers to support the separat ion of register
al location from code generat ion and optimization.
The PL.8 compiler is writ ten in PL.8. A little over
half its programs need spill code when compi led for
the sixteen register System/370. If 32 registers are
available as in the 801, over 95% of the compiler
routines can register allocate without spill code.

There is an obvious tension be tween
optimizat ion, which increases the time when
computat ions should be available in registers, and
register allocation which must pack these computations
into a minimal set of registers. If a target machine had
many fewer than sixteen registers we suspect our
compiler would over opt imize and produce
unacceptable amounts of spill code. Some evidence of
this is given by our experience with the MC68000,
which part i t ions its registers into eight address and
eight data registers. In practice the register allocator
runs out of one set while there are still available
registers in the other. A few complex programs on the
MC68000 take 1.5 times the code space of
Sys tem/370 because of excessive register spill code.
Thus our ability to efficiently support several machines
is subject to some architectural restrictions. Our
method o.f compilat ion biases us in favor of regular
and simple register-register architectures such as the
801.

Compiler Reliability

One perennial fear about opt imizat ion is its
correctness. As we have shown above, careful
organizat ion of an optimizing compiler greatly
simplifies optimization. This organization also tends
to encourage most bugs in the optimizing algorithms to
produce catastrophic results which can thus be found
by simple testing procedures. Our basic procedure is
to compile and execute a test bucket of 150 self
checking programs every night. The test run produces
code which is executed on all computers and at various
levels of optimization.

In addition, the PL.8 effort has lead to a
powerful compiler testing strategy. The PL.8 compiler
is writ ten in PL.8 and compiles itself. Periodically a
"fixed point" is compiled. The current source is
completely reeompiled using a compiler whose
operat ion is bel ieved to correspond to that source.
The object and listing output of this compilat ion is
saved and also used to build a new compiler. This
new compiler is then used to compile the same source
again. A bit for bit comparison of the object and
listing files from both compiles is then made (ignoring
dates, t imes, and other system noise). If they are
identical the new version is made available to our
users and as a fall back for compiler development .
The fixed point process guarantees that the official
compiler will be a reasonable development tool for
itself. This technique seems to be a very effective
check of the compiler, especially when coupled with a
recompile of the runtime l ibrary for each machine.
PL.8 code is highly portable from machine to machine
and it is rare to find a bug on one machine that does
not occur on all.

Conclusion

Global optimization and register allocation are
useful tools for simplifying compiler design. They
greatly reduce the need for ad hoe methods to obtain
good object code and produce higher quality code t.han
special casing. Compiler quality is enhanced because
reliance is p l aced o r methods that are separable and
whose correctness can be studied in general terms.
Furthermore the PL.8 compiler has demonstra ted that
the optimizing algorithms can be applied to a compiler
that accepts multiple source languages and produces
code for several different architectures. By applying
global optimizat ion to checking code, encouragement
is given to the use of high level, checked languages
and reliability is further enhanced.

Acknowledgments

Many people contr ibuted to the PL.8 compiler.
Greg Chaitin, Dick Goldberg, Pete Markstein, Vicky
Markstein, Victor Miller, Peter Oden, Phil Owens and
Hank Warren all made major contr ibut ions to its
design and development . Fran Allen has provided us
valuable advice and counsel over the years. John
Cooke contr ibuted many ideas, but most important ly
taught us how to think abotit compilation.

28

Appendix exchange (lines 18-20), the original 19 lines of IL
code are reduced to four:

An Example of PL.8 Compilation

In order to view the effects of optimization on
an actual program, consider the simple sort in Fig. 1.
Fig. 2 shows the result of source language translation
for the the exchange of values in s tatements 18
through 20. (Fig 3 is the translation of the rest of the
source program.) The listings can be read as follows:

1) The source line that gave rise to the code is
on the left.

2) Register 15 (ROF) is the base for the stack
frame and js the only implicit addressability.

3) The procedure begins by storing a parameter,
which is by linkage convention the locat ion of the
called program's static storage, in the (stack) variable
named / . s ta t ic . Static storage contains PL.8 static
internal variables (Algol own). It also contains
address constants to access static external data and
controlled descriptors.

4) Code generation uses as many "symbolic"
registers as it needs. Hence R98, R99 etc. These
registers are not reused except in the case of formally
identical computations. (Computat ions that apply the
same opera tor to the same operands are formally
identical.)

5) This example uses the following operations:

AI Add immediate value
BF Branch i f condition b i t specified = 0
BT Branch i f condition b i t specified = 1
C Compare two registers, result is

a symbolic register
CI Compare a register to an (immediate)

l i t e ra l value
L Load from storage to a register
LI Load immediate value
flPYI Mult iply immediate value
MR Move register
RET Return to caller
ST Store
TGTI Trap i f register is logical ly greater

than immediate value

6) .X is the address constant in static internal to
access the external variable X.

7) Trap instructions produce results that are
used.

Note the repetitive nature of the code. It has
been produced from source language fragments
without considering context.

After code motion and commoning much of the
"housekeeping" code is out-of loops and repeti t ion is
eliminated. (Source language computations will also
be opt imized but they tend to be of lesser
importance.) Considering only the code to do the

ST RII9,TEMP(ROF) temp=x(j);
ST RIIS,X(R99, RII7) x (j)=x (i) ;
L RI32,TEMP(ROF)
ST RI32,X(R99, R115) x(i)=temp;

Improvement is still possible but commoning and code
motion alone have reduced the number of instructions
executed by more than a factor of four. Dead store
elimination, load anticipation, and move register (MR)
coalescing will further improve the code. After every
store of the form:

ST RX ,A

A move register is inserted as follows:

ST RX,A
MR RA,RX

RA is
loaded

the symbolic register that would have been
if a load from A were generated, i.e.

L RA,A

After inserting the MR ops, commoning will eliminate
any loads of RA that are reached by the move register.
Dead code elimination removes the MR ops that are
superfluous. Store elimination may then eliminate the
store itself and those move registers that remain may
be eliminated by coalescing registers. The following
shows the code for the exchange after move registers
have been inserted. Each instruction which can be
eliminated is labelled with the optimization which acts
on it.

ST Rll9,temp(ROF) store eliminatfon
MR RI32,RI19 register coalescing
ST RII8,X(R99,R117)
MR RI19,R118 dead code
L R132,temp(ROF) commoning
ST RI32,X(Rgg,RI15)
MR RI18,R132

Fig. 4 shows the final source code for the entire
procedure. Note that the exchange code from source
lines 18-20 which was first 19 lines and then four has
been reduced to:

ST ROI,X(RO5,ROC)
ST RO2,X(ROS,ROB)
MR ROI,R02

The final move register, Which was inserted, has not
been eliminated ag it makes it possible to move a load
of x(i) on a high frequency path out of the loop even
though x(i) is altered in the loop. Thus, many simple
steps, operat ing in an independent but pervasive
manner can do as well as the best special case analysis.

29

Fig. I . Source Code Example

11
21
3 Ibsort: procedure;
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
x(0:100) fixed(31)bin static ext,
t e m p fixed(31)bin,
(i , j) fixed(31)bin,

/* bubble sort in stat ic external storage * /

do i = 0 to hbound(x)-l;

do j = i to hbound(x);

i f x (i)>x(j) then do;
temp = x (j) ; /* exchange */
x (j) = x (i) ; /* x (i) and * /
x (i) = temp; /* x (j) . * /

end do;

end do j ;

end do i ;

end proc bsort;

18 (1)
18
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
2O
2O

Fig. 2.

L
L
L
TGTI
MPYI
L
ST
L
L
L
TGTI
MPYI
L
L
L
TGTI
MPYI
L
ST
L
L
L
TGTI
MPYI
L
ST

Generated code to do exchange

R98,/.STATIC(ROF) (2,3)
Rgg,..X (R98) (6)
RII I ,J (ROF) (4)
R116,R111,100 (7)
RllT,R111,4
R119,X(R99,R117) TRAP=R116 (7)
R119,TEMP(ROF)
Rgs,/.STATIC(ROF)
R99,.X(R98)
RIO2,1(ROF)
RI14,R102,100
R115,R102,4
Rg8,/.STATIC(ROF)
Rgg,.x(Rg8)
R111,J(ROF) (4)
RI16,R111,IO0
RI17,R111,4
RII8,X(Rgg,R115) TRAP=R114
RII8,X(R9g,R117) TRAP=R116
R98,/.STATIC(ROF)
Rgg,.X(R98)
RIO2,1(ROF)
RI14,RI02,100
R115,R102,4
RI32,TEMP(ROF)
RI32,X(Rgg,R115) TRAP=R114

Fig. 3.

28 (I) ST
13 L
13 L
13 LI
13 ST
13 L
13 CI
13 BT
13 L3:
15 L
15 MR
15 L
15 L
15 ST
15 L
15 CI
15 BT
15 L6:
17 L
17 L
17 L
17 TGTI
17 MPYI
17 L
17 L
17 L
17 L
17 TGTI
17 MPYI
17 L
17 C
17 BF

(Code for
21Lg:
15 L
15 AI
15 ST
15 L
15 CI
15 BF
15 L7:
13 L
13 AI
13 ST
13 L
13 CI
13 BF
13 L4:
28 RET

Generated for rest of program

RI34,/.STATIC(ROF)
R98,/.STATIC(ROF)
Rgg,.X(Rg8)
RIO0,O
RIOO,I(ROF)
RIO2,1(ROF)
RIO4,R102,99
RIO4,27/GT,L4

RIO2,1(ROF)
R108,RI02
R98,/.STATIC(ROF)
R99,.X(R98)
RIO8,J(ROF)
RIII,J(ROF)
RI13,R111,100
R113,27/GT,L7

R98,/.STATIC(ROF)
R99,.X(R98)
RIO2,1(ROF)
R114,R102,100
R115,R102,4
R118,X(R99,R115)
R98,/.STATIC(ROF)
Rgg,.x(Rg8)
RIII,J(ROF)
RII6,R111,100
R11'7,R111,4
RI19,X(Rg9,R117)
R120,RII8,R119
R120,27/GT,L9
lines 18-20)

RII1,J(ROF)
R112,R111,I
RII2,J(ROF)
R111,J(ROF)
R113,R111,IO0
R113,27/GT,L6

RIO2,1(ROF)
RIO3,RI02,1
RIO3,1(ROF)
RIO2,1(ROF)
RIO4,RI02,g9
RIO4,27/GT,L3

(2,3)
(6)

(4)

(4)
(7)

TRAP=R114 (7)

TRAP=R116

30

I
I
I

131
I

151
151
151

171
171
171
191
201
201
211
151
151
151
151
131
131
131
131

I
I

Fig. 4.

L14:

L13:

L9:

L7:

Final System/370 object code

ST
BALR
L
LA
LR

LR
C
BH
CL
BH
L
SLL

L
CR
BNH
ST
ST
LR

ROD,52(ROF)
ROD,O
RO3,.X(R01)
R01,0
RO5,R01

R04 ,R01
RO5,=F'400'
L7
ROI,=F'IO0'
*-3
RO2,X (RO3,R05)
R04,2

ROO,X(RO3,R04)
RO2,RO0
L9
RO2,X(RO3,R04)
ROO,X(RO3,R05)
RO2,RO0

<

PERFORMS
TGTI

<

A
C
BNH

RO4,=F'4'
RO4,=F'400'
L13

A
A
C
BNH
L
BR

RO5,=F'4'
ROI,=F'I'
RO5,=F'396'
L14
ROD,52(ROF)
ROE

R e f e r e n c e s

1. Allen, F.E., "Bibliography on Program
Optimization," IBM Research Report RC5767, 1975.

2. Allen, F.E., et al, "The experimental compiling
system", IBM Journal of Research and Development,
Vol. 24, No. 6, Nov 1980, pp. 695-715

3. Allen, F.E. and Cocke, J., "A Program Data Flow
Analysis Procedure," Communications of the ACM,
March 1976.

4. J. L. Carter, "A case study of a new code
generation technique for compilers", Communications
of the ACM, Vol. 20, pp. 914-920, (1977)

5. Chaitin, G. J., et al, "Register Allocation via
Coloring," Computer Languages, Vol. 6, pp. 45-57,
1981, Great Britain.

6. Chaitin, G. J., "Register Allocation and Spilling via
Graph Coloring", SIGPLAN Symp. on Compiler
Construction, June 23-25, 1982, Boston, Mass.

7. Cocke, J. and Markstein, P., "Measurement of
Program Improvement Algorithms." Proc. IFIP Cong.
'80, Tokyo, Japan Oct. 6 - 9, 1980, Melbourne,
Australia Oct. 14 - 17 1980, 221-228.

8. William Harrison, "A New strategy for code
generation - The general purpose optimizing
compiler", Proc. Fourth ACM Symp. on Principles of
Programming Languages, January, 1977, pp. 29-37

9. Markstein, V., Cocke, J., and Markstein, P.,
"Optimization of Range Checking," SIGPLAN Symp.
on Compiler Construction, June 23-25, 1982, Boston,
Mass.

10. Radin, G., "The 801 Minicomputer '', Symp. on
Architectural Support for Programming Languages and
Operating Systems, March 1982, pp. 39-47

31

