

SARITA ADVE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SADVE@ILLINOIS.EDU

Distribution Statement A. Approved for Public Release

EPOCHS OVERVIEW

S. Adve, V. Adve, P. Bose, D. Brooks, L. Carloni, S. Misailovic, V. Reddi, K. Shepard, G-Y Wei

KEY: HARDWARE & SOFTWARE INTERFACES

Key to heterogeneous system design: Interfaces for hardware & software

- Specializable
- Programmable
- Efficient

This talk: Two interfaces

- Spandex: Accelerator communication interface
- Heterogeneous Parallel Virtual Machine (HPVM): Hardware-software interface

Enable specialization with programmability and efficiency

HETEROGENEOUS SYSTEMS COMMUNICATION

HETEROGENEOUS DEVICES HAVE DIVERSE MEMORY DEMANDS

HETEROGENEOUS DEVICES HAVE DIVERSE MEMORY DEMANDS

Typical CPU workloads: fine-grain synchronization, latency sensitive

HETEROGENEOUS DEVICES HAVE DIVERSE MEMORY DEMANDS

Typical GPU workloads: spatial locality, throughput sensitive

KEY PROPERTIES OF COHERENCE PROTOCOLS

Properties	
Granularity	
Invalidation	
Updates	
I	

KEY PROPERTIES OF COHERENCE PROTOCOLS

Properties	CPU MESI	GPU GPU	DeNovo (for CPU or GPU)
Granularity	Line	Reads: Line Writes: Word	Reads: Flexible Writes: Word
Invalidation	Writer-invalidate	Self-invalidate	Self-invalidate
Updates	Ownership	Write-through	Ownership

How to integrate different accelerators with different protocols?

SPANDEX: FLEXIBLE HETEROGENEOUS COHERENCE INTERFACE [ISCA'18]

- Adapts to exploit individual device's workload attributes
- Better performance, lower complexity
- \Rightarrow Fits like a glove for heterogeneous systems!

Supported by ADA JUMP and C-FAR STARNET centers

SPANDEX OVERVIEW

Key Components

- Flexible device request interface
- DeNovo-based LLC
- External request interface

Device may need a translation unit (TU)

SPANDEX OVERVIEW

Key Components

- Flexible device request interface
- DeNovo-based LLC
- External request interface

Device may need a translation unit (TU)

SPANDEX DEVICE REQUEST INTERFACE

Action	Request	Indicates
Deed	ReqV	Self-invalidation
Read	ReqS	Writer-invalidation
	ReqWT	Write-through
Write	ReqO	Ownership only
Read+	ReqWT+data	Atomic write-through
Write	ReqO+data	Ownership + Data
Writeback	ReqWB	Owned data eviction

• Requests also specify granularity and (optionally) a bitmask

DYNAMIC & NEW COHERENCE SPECIALIZATIONS

• Spandex flexibility & simplicity enables dynamic & new coherence specializations

Dynamic Spandex request selection Producer-consumer forwarding Extended granularity flexibility

- Directed by compiler or runtime
- Applied to neural networks: enables new programming patterns

DATA PARALLEL VS. PIPELINED NEURAL NETWORKS

• But need weights of all layers for reuse layer for reuse

Spandex flexibility enables fine-grained communication and efficient pipelines

previous input

COHERENCE SPECIALIZATION FOR PIPELINED NEURAL NETWORKS

- Dynamically select coherence strategy for different data
 - Use ownership for weight data (reuse), writethrough for input feature data

COHERENCE SPECIALIZATION FOR PIPELINED NEURAL NETWORKS

- Dynamically select coherence strategy for different data
 - Use ownership for weight data (reuse), writethrough for input feature data
- Optimization1: Producer \rightarrow Consumer forward via last level cache (LLC)
 - LLC forwards feature output to next consumer

COHERENCE SPECIALIZATION FOR PIPELINED NEURAL NETWORKS

- Dynamically select coherence strategy for different data
 - Use ownership for weight data (reuse), writethrough for input feature data
- Optimization1: Producer \rightarrow Consumer forward via last level cache (LLC)
 - LLC forwards feature output to next consumer
- Optimization2: Direct Producer → Consumer forward w/ owner prediction
 - Producer directly forwards feature data to consumer cache, with no LLC lookup

EVALUATION METHODOLOGY

- Baseline system: CPU + Multiple GPU compute cores on a network on chip
- Neural network (NN) computation on different compute cores of GPUs
- NNs based on standard networks or information from literature
- Cycle accurate architectural simulation: GEMS+GPGPUSim+Garnett+Spandex

RESULTS FOR NEURAL NETWORKS

Large reduction in execution time and/or network traffic

Next steps for Spandex: Apply to EPOCHS application and integrate with compiler

RECAP SO FAR

Key to heterogeneous system design: Interfaces for hardware & software

- Specializable
- Programmable
- Efficient

This talk: Two interfaces

- ✓ Spandex: Accelerator communication interface
- Heterogeneous Parallel Virtual Machine (HPVM): Hardware-software interface

Enable specialization with programmability and efficiency

CURRENT INTERFACE LEVELS

App. productivity	Domain-specifi	c prog. language			
App. performance	General-purpos	e prog. language			
Language innovation Language-level Compiler IR					
Compiler investment Language-neutral Compiler IR					
Object-code portability Virtual ISA					
Hardware innovation	า	"Hardware" ISA			
Lore™	(\)				

WHERE SHOULD WE ABSTRACT HETEROGENEITY?

HETEROGENEOUS PARALLEL VIRTUAL MACHINE

Key to Programmability:

Common abstractions for heterogeneous parallel hardware

Use HPVM for:

- 1. Portable object code
- 2. Retargetable parallel compiler IR and system
- 3. Run-time scheduling

Kotsifakou et al., PPOPP 2018

ABSTRACTION OF PARALLEL COMPUTATION

HPVM BOTTOM-UP CODE GENERATION

APPROX-HPVM: ACCURACY AWARE OPTIMIZATION

Relaxing accuracy can enable higher efficiency (2X to 50X in our work) Can we make these techniques easier to use?

Goal 1: Applications should only specify high-level accuracy goals

- Maximum acceptable loss in quality, e.g., inference error, PSNR
- End-to-end metrics, not per function or pipeline stage or …

Goal 2: (Often) Want object-code portability

- Approximation choices are highly system-dependent
- Can make orders-of-magnitude difference in performance, energy

ApproxHPVM: Accuracy-aware representation and optimizations Implemented for Keras: Neural networks in TensorFlow

Sharif et al., OOPSLA 2019, accepted with revisions

DNN SPEEDUP AND ENERGY SAVINGS

Target system: NVIDIA Tegra TX2 + PROMISE ML accelerator TX2: FP32 or FP16, PROMISE: 7 voltage levels in SRAM bitlines

1-2% loss of inference accuracy gives2X-9X speedup, 2X-11X energy savings in most networks

SUMMARY: HARDWARE & SOFTWARE INTERFACES

Key to heterogeneous system design: Interfaces for hardware & software

- Specializable
- Programmable
- Efficient

This talk: Two interfaces

- Spandex: Accelerator communication interface
- Heterogeneous Parallel Virtual Machine (HPVM): Hardware-software interface

Enable specialization with programmability and efficiency

ERI ELECTRONICS RESURGENCE INITIATIVE

SUMMIT

2019 | DETROIT, MI | JULY 15-17