
Towards Principled Error-Efficient Systems

Sarita Adve
University of Illinois at Urbana-Champaign

sadve@illinois.edu

IOLTS 2020 Keynote

Collaborators:

Abdulrahman Mahmoud, Radha Venkatagiri, Vikram Adve, Khalique Ahmed, Christopher Fletcher, Siva
Hari, Maria Kotsifakou, Darko Marinov, Sasa Misailovic, Hashim Sharif, Yifan Zhao, and others

This work is supported in part by DARPA, NSF, a Google Faculty Research Award, and by the Applications Driving Architecture (ADA) Research center
(JUMP center co-sponsored by SRC and DARPA)

Errors are becoming ubiquitous

Pictures taken from publicly available academic papers and keynote presentations 2

Errors (Must Prevent)

*Pictures from publicly available sources

Designs that aim to prevent all errors

Errors (Must Prevent)

Key Facilitator : Moore’s Law + Dennard Scaling

Power, Performance, Area are now limiting factors

Too expensive for many systems

Algorithm / Application

Applications Provide Opportunities

6

Algorithm / Application

Execution

Output

Perfect

Perfect

© MIT News

Applications Provide Opportunities

7

Algorithm / Application

Execution

Output

Perfect
Can tolerate errors

Perfect
Sufficient Quality

© MIT News

Applications Provide Opportunities

8

Expensive Cheap(er) User Acceptable
Output

Low-Cost Resiliency

Errors (Tolerable)

Prevent all Tolerate some

9

Expensive Cheap(er) User Acceptable
Output

Approximate Computing

Precise
computation

Approximate
computation

Errors (Desirable)

10

Error-Efficient
Only prevent as many (HW or SW) errors as absolutely needed (allow others)

Conserve resources across the system stack

Error-Efficient Systems

11

Adoption Challenges:
Lack of principled and unified methodologies
Excessive programmer burden

Error-Efficient Systems

Research Vision

1. Enable error-efficiency as a first-class metric for novice and expert users

2. Principled and unified error-efficiency workflow across the system stack

Software

Hardware

Error-Efficient
System?

Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems

Objective of Error Analysis

How do (hardware) errors affect program output?

15

APPLICATION
.
.

Sobel

APPLICATION
.
.

Single error injection

Error Outcome of Single Error

Output Corruption!

X=

16

Image difference
(rmse)

Quality Metric
(domain specific)

APPLICATION
.
.

Sobel

7%
Quality degradation

APPLICATION
.
.

Single error injection

Output Corruption!

Quantifying Output Quality

17

Image difference
(rmse)

Quality Metric
(domain specific)

APPLICATION
.
.

Sobel

7%
Quality degradation

Quality Threshold = 10% APPLICATION
.
.

Single error injection

User-Acceptable Output Corruption!

Is Output Quality Acceptable?

18

APPLICATION
.
.

Sobel

Error Outcome of Single Error

19

APPLICATION
.
.

Sobel

Error Outcome of All Errors

20

Challenges of Automated Error Analysis

• Accurate : Precisely calculate output quality

• Comprehensive : All errors (for given error model)

• Automatic : Minimal programmer burden

• Cheap : Many error injections = expensive!

• General Methodology : Applications + Error Models

Meeting ALL of the above requirements is hard

ISCA’14, MICRO’16, DSN’19, In Review

Tools Suite for Automated Error Analysis

• Accurate : Precisely calculate output quality

• Comprehensive : All errors (for given error model)

• Automatic : Minimal Programmer Burden

• Cheap : Many error injections = expensive!

• General Methodology : Applications + Error Models

Tool Suite : Relyzer, Approxilyzer, gem5-Approxilyzer, Winnow

• Perturbation in program state (instructions + data)
 Caused by underlying fault in hardware

• Error Model for Instructions
 Single bit transient errors in operand registers of dynamic instructions

• Error Model for Data
 Multi-bit (random 1-bit, 2-bit, 4-bit, 8-bit) transient errors in memory

22

Error Analysis Output :
Application Data Error Profile + Application Instruction Error Profile

Error Model

23

Quality Metric
+

+
Quality Threshold (Optional)

Error Analysis

Error Analysis User Interface: Inputs

24

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Analysis User Interface: Output

25

Error outcome
(for all error sites)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Comprehensive Error Profile

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

26

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error OutcomeError Site Description

27

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site Description

Error Model: Single bit errors in operand registers of dynamic instructions

28

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site: Dynamic instruction + Operand Register + Register Bit

PC + Cycle = Dynamic instruction

29

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site: Dynamic instruction + Operand Register + Register Bit

Register Name Register Bit

30

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site: Dynamic instruction + Operand Register + Register Bit

Register Type Operand Type

31

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Outcome

Error Outcome: Impact of an error, at this error site, on program output

32

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Quality Degradation

Error Outcome: Impact of an error, at this error site, on program output

33

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

0x40a670, 342769813038500, Read, 0x6a10a, 2, 7 :: QD - 0.0008

Error Model: 1- bit transient error in (data bit stored) in DRAM

PC + Cycle = Dynamic instruction
Access

Type
Byte

Offset

BitAddress

Quality
Degradation

Error Outcome for One Error Site

34

Error outcome
(for one error site)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for One Error Site

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

35

Error outcome
(for all error sites)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Error Analysis

Error Outcome for All Error Sites

Billions of error sites in average programs  Error injections in all expensive!

Errors flowing through similar control+data paths produce similar outcomes
36

APPLICATION
.
.
.

Output

Error Pruning Using Equivalence

Errors flowing through similar control+data paths produce similar outcomes
37

APPLICATION
.
.
.

Output

Equivalence Classes (control + data heuristics)

Error Pruning Using Equivalence

Errors flowing through similar control+data paths produce similar outcomes
38

APPLICATION
.
.
.

Output

Equivalence Classes (control + data heuristics)

Error Pruning Using Equivalence

39

APPLICATION
.
.
.

Output

Error Pruning Using Equivalence

Inject error in Pilot
Pilot outcome = Outcome of all errors in class

Pilots

Few error injections to predict the outcome of all errors

40

Error outcome
(for all error sites)

Quality Metric
+

+
Quality Threshold (Optional)

Comprehensive
Error
Profile

Comprehensive Error Profile with Few Injections

Up to 5 orders of magnitude reduction is error injections

Error Analysis

• Heuristics used to build equivalence classes need validation
 Does the pilot accurately represent its equivalence class?

Equivalence class (EC)

Validation of Equivalence Heuristics

Pilot (Representative error-site from EC)

• Heuristics used to build equivalence classes need validation
 Does the pilot accurately represent its equivalence class?

Equivalence class (EC)

Validation of Equivalence Heuristics

Pilot (Representative error-site from EC)

Population

• Heuristics used to build equivalence classes need validation
 Does the pilot accurately represent its equivalence class?

~ 7 million error injections to validate this technique

Equivalence class (EC)

Validation of Equivalence Heuristics

Pilot = Error Outcome E

All in Population = Error Outcome E

100% Validation Accuracy

44

On average, >97% (up to 99%) validation accuracy

Validation Accuracy: Data Errors

45

On average, >97% (up to 99%) validation accuracy

Validation Accuracy: Data Errors

Instruction Error Profile  Customized Ultra Low-Cost Resiliency

• Selectively protect instructions

 End-to-end output quality is not acceptable to user/application

 Protection Scheme: Instruction duplication

 Less instructions protected  Reduced resiliency overhead

• Optimal (custom) resiliency solution
 Quality vs. resiliency coverage vs. overhead

46

Customized Error Efficiency: Use Case 1

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Resiliency Coverage

Protect All Output Corruptions

99% Resiliency Coverage 

Ultra-Low Cost Resiliency (Water)

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Resiliency Coverage

Protect All Output Corruptions Protect All Output Corruptions with Quality Degradation>1%

55%

99% Resiliency Coverage 

Significant resiliency overhead savings for small loss of quality

Ultra-Low Cost Resiliency (Water)

Data Error Profile  Approximate Computing

49

Identify first-order approximable data in a program

Customized Error Efficiency: Use Case 2

50

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

D
at

a
By

te
s

in
 A

pp
lic

at
io

n
(%

)

Approximation Target (%)

90% approximate 

1-Bit 2-Bit 4-Bit 8-Bit

Customized Approximate Computing (FFT)

51

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

D
at

a
By

te
s

in
 A

pp
lic

at
io

n
(%

)

Approximation Target (%)

90% approximate 

1-Bit 2-Bit 4-Bit 8-Bit

Customized Approximate Computing (FFT)

77% of data bytes are approximable 90% of the time when corrupted with a single-bit error

52

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

D
at

a
By

te
s

in
 A

pp
lic

at
io

n
(%

)

Approximation Target (%)

90% approximate 

1-Bit 2-Bit 4-Bit 8-Bit

Customized Approximate Computing (FFT)

53

1-Bit 2-Bit 4-Bit 8-Bit

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

D
at

a
By

te
s

in
 A

pp
lic

at
io

n
(%

)

Approximation Target (%)

Customized Approximate Computing (Swaptions)

Approximate Memory Technique  Lower DRAM refresh rate to save power*
*Flikker [ASPLOS’11]

Mapping Data to Approximate Memory

critical

High Refresh
No Errors

Low Refresh
Some Errors

non-
critical

Application Data

Approximate Memory Technique  Lower DRAM refresh rate to save power*
*Flikker [ASPLOS’11]

Mapping Data to Approximate Memory

critical

High Refresh
No Errors

Low Refresh
Some Errors

non-
critical

Application Data

Approximate Memory Technique  Lower DRAM refresh rate to save power*
*Flikker [ASPLOS’11]

Automatic identification of Critical data

Quality Threshold = $0.001

Mapping Accuracy = 99.9%

Power Savings = 23%

Swaptions

Mapping Data to Approximate Memory

Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems

Analyzing software for…

≈…hardware errors …software bugs

Leverage software testing techniques to improve hardware error analysis

Hardware Error AnalysisSoftware Testing

Minotaur: Key Idea

ASPLOS’19

Minotaur

Adapts four software testing techniques to hardware error analysis

60

Input Quality for Error Analysis  PC coverage

Minotaur

61

High quality (fast) minimized inputs from (slow) standard inputs

Minotaur

62

Prioritize analyzing specific program locations based on analysis objectives

Terminate analysis (early) when objective is met

Minotaur

63

Prioritize analysis over fast, (potentially) inaccurate inputs first

Minotaur

64

4X average speedup in error analysis
10x average speedup (upto 39x) for analysis targeting low-cost resiliency

18x average speedup (up to 55x) for analysis targeting approximate computing

Minotaur

Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems

Deep Neural Networks (DNNs)
• Deep Neural Networks (DNNs) used in many application domains

―Entertainment/personal devices to safety-critical autonomous cars
―DNN software accuracy is < 100%: ResNet50 on ImageNet is ~76% accurate
―But must execute “reliably” in the face of hardware errors

• Traditional reliability solution:

• Can we use domain knowledge to reduce overheads of DNN resilience?
66

https://www.extremetech.com/extreme/290029-tesla-well-have-full-self-driving-by-2020-robo-taxis-too

Tesla’s Full Self-Driving Chip (FSD), 2019

~2X Overhead in area, power

https://www.extremetech.com/extreme/290029-tesla-well-have-full-self-driving-by-2020-robo-taxis-too

HarDNN: Approach

• Software-directed approach for hardening CNNs for inference

GPU

Embedded

? Future
Accelerator

SW HW

Target Granularity Vulnerability Estimation Selective Protection

Identify DNN component
granularity for analysis

Efficiently estimate DNN
component vulnerability

Selectively protect to meet
coverage and overhead targets

HarDNN

High, tunable resiliency with low overhead

SARA’20, arXiv’20, DSML’20

HarDNN Challenges

• What granularity components to protect?
―Challenge: Identify granularity for selective protection

• Which components to protect?
―Challenge: Accurately estimate vulnerability of each component

• How to protect?
―Challenge: Low-cost protection mechanism

68

What Granularity Components to Target?
CNN computation hierarchy

Key computation: Convolution on feature maps

69

*

Input Fmap Filter Output Fmap

Weight Neuron

What Granularity Components to Target?
• Full network

―Rerun inference in its entirety

• Layer
―Estimate vulnerability of layer, duplicate vulnerable layers by running ltwice

• Feature Map
―Estimate vulnerability of feature map, duplicate vulnerable fmaps by duplicating filters

• Neuron
―Estimate vulnerability of neuron, duplicate vulnerable neurons

• Instruction

Feature Map (Fmap) Granularity
• Robustness to translational effects of inputs

• Granularity “sweet spot”
―Fine-grained + composable to layers

Network-Dataset Conv Layers Fmaps
AlexNet-ImageNet 5 1,152
VGG19-ImageNet 16 5,504
SqueezeNet-ImageNet 26 3,944
ShuffleNet-ImageNet 56 8,090
GoogleNet-ImageNet 57 7,280
MobileNet-ImageNet 52 17,056
ResNet50-ImageNet 53 26,560

How to Estimate Feature Map Vulnerability
• 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Probability an error in fmap causes a Top-1 misclassification
• Use statistical injection for neurons within feature map

• BUT mismatches are relatively rare, takes too many injections to converge
• Insight: Replace binary view of error propagation with continuous view
• Cross-entropy loss: Used to train DNNs to determine/enhance goodness of network

Mismatch
Change classification?

Yes

No Not a mismatch

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = # Yes / (Total error injections)

Loss: Continuous Metric for Error Propagation
Insight: Replace binary view of propagation with continuous view

Use cross-entropy loss

𝑘𝑘

𝐾𝐾

𝐻𝐻

𝑊𝑊

83%
11%

.

.
6%

CAR 
TRUCK 

.

.

.
BICYCLE 

Input
Convolutional Neural Network Classification

SoftmaxFeature Maps

0.18

Loss

𝑘𝑘

𝐾𝐾

𝐻𝐻

𝑊𝑊

11%
83%

.

.
6%

CAR 
TRUCK 

.

.

.
BICYCLE 

Input
Convolutional Neural Network Classification

SoftmaxFeature Maps

2.21

Loss

Loss: Continuous Metric for Error Propagation
Insight: Replace binary view of propagation with continuous view

Use cross-entropy loss

𝑘𝑘

𝐾𝐾

𝐻𝐻

𝑊𝑊

58%
36%

.

.
6%

CAR 
TRUCK 

.

.

.
BICYCLE 

Input
Convolutional Neural Network Classification

SoftmaxFeature Maps

0.54

Loss

Loss: Continuous Metric for Error Propagation
Insight: Replace binary view of propagation with continuous view

Use cross-entropy loss

𝑘𝑘

𝐾𝐾

𝐻𝐻

𝑊𝑊

58%
36%

.

.
6%

CAR 
TRUCK 

.

.

.
BICYCLE 

Input
Convolutional Neural Network Classification

SoftmaxFeature Maps

0.54

Loss

∆𝑳𝑳𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 =
∑𝒊𝒊𝑵𝑵 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 − 𝑳𝑳𝒊𝒊

𝑵𝑵
Our metric: average delta cross entropy loss:

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for Fmap = ∆𝑳𝑳𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 / ∑𝒊𝒊𝑵𝑵∆𝑳𝑳𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭

Loss: Continuous Metric for Error Propagation

Mismatch vs. Loss: Which Converges Faster?
• How many injections per feature map? Sweep from 64 to 12,288

―Use Manhattan distance from 12,288 injections to quantify “similarity” of
vulnerability estimates

0
0.02
0.04
0.06
0.08

0.1
0.12

Av
g

M
an

ha
tta

n
D

is
ta

nc
e

fo
r r

el
at

iv
e

vu
ln

er
ab

ili
ty

Injections/Fmap

IMAGENET-Mismatch

IMAGENET-Loss

0
0.2
0.4
0.6
0.8

1

0 61 12
2

18
3

24
4

30
5

36
6

42
7

48
8

54
9

61
0

67
1

73
2

79
3

85
4

91
5

97
6

10
37

10
98

C
um

ul
at

iv
e

R
el

at
iv

e
Vu

ln
er

ab
ili

ty

Feature Maps

64
512
12288

AlexNet-ImageNet

Mismatch and Loss vulnerability estimates converge with increasing injections
Loss converges faster

How to Protect?
• Objective: Duplicate computations (MACs) of vulnerable feature maps

• Duplication Strategy: Filter Duplication
―Software directed approach: portable across different HW backends
―Duplicates the corresponding filter to recompute output fmap
―Validate computations off the critical path

*

Input Fmap Filter Output Fmap

Validate

Overhead vs. Coverage

0
10
20
30
40
50
60
70
80
90

100

 - 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A
dd

iti
on

al
 M

A
C

s
(%

)

Coverage

ResNet50
MobileNet
VGG19
GoogleNet
ShuffleNet
SqueezeNet
AlexNet

Overhead (MACs) sub-linear to coverage
SqueezeNet: 10X reduction in errors for 30% additional computation
Next step: combination with other granularities, prune injection space

Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems

ApproxTuner: Hardware + Software Approx

• Unified compiler+runtime framework for software and hardware approximations

• Goal:
For each operation in the application
―select hardware and/or software approximation with
―acceptable end-to-end accuracy and maximum speedup (minimum energy)

• Currently for applications with tensor operations; e.g., DNNs

• Example approximations studied
―Software: Perforated convolutions, filter sampling, reduction sampling
―Hardware: lower precision, PROMISE analog accelerator [ISCA18]

OOPSLA’19, in review

ApproxTuner Innovations

• Combines multiple software and hardware approximations

• Uses predictive models to compose accuracy impact of multiple approximations

• 3-phase approximation tuning
• Development-time preserves hardware portability via ApproxHPVM IR
• Install-time allows hardware-specific approximations
• Run-time allows dynamic approximation tuning

• Federated Tuning for efficiency at install-time
• Install-time tuning is expensive under resource constraints

GPU Speedup and Energy Reduction

2.1x mean speedup and 2x mean energy reduction with 1% QoS loss

Approximations: Sampling, Perforation, FP16

Federated vs Empirical: Energy Reduction
Approximations: PROMISE accelerator, Sampling, Perforation, FP16

Federated-p1 gives 4.5x energy reduction, comparable to empirical tuning

Runtime Approximation Tuning

Runtime tuning helps maintain responsiveness in face of frequency changes

Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems

Towards a Discipline for Error-Efficient Systems

App
Component

Input GenerationInput
HW-aware error models
Efficient error injections
Error outcome prediction
DNN Predictors

Error Analysis

C1 +

+δ

App
Component

Input

Cn +

+δ

Test Quality
Test Minimization
Automated Generation

Context Sensitivity
Automated Hardening
Fast DNN Checkers

Error-Efficient
Code Transformations

Incremental &
Compositional

Workflow

Cn-Hardened

C1-Hardened

+

Development/design time + Install time + Run time

End of Moore’s law and Dennard scaling motivate error efficient systems
• Integrate hardware errors in software engineering workflow
• Integrate hardware and software error optimization for error efficient system workflows

Towards a Discipline for Error-Efficient Systems

App
Component

Input GenerationInput
HW-aware error models
Efficient error injections
Error outcome prediction
DNN Predictors

Error Analysis

C1 +

+δ

App
Component

Input

Cn +

+δ

Test Quality
Test Minimization
Automated Generation

Context Sensitivity
Automated Hardening
Fast DNN Checkers

Error-Efficient
Code Transformations

Incremental &
Compositional

Workflow

Cn-Hardened

C1-Hardened

+

Development/design time + Install time + Run time

End of Moore’s law and Dennard scaling motivate error efficient systems
• Integrate hardware errors in software engineering workflow
• Integrate hardware and software error optimization for error efficient system workflows

	Towards Principled Error-Efficient Systems
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Research Vision
	Outline
	Objective of Error Analysis
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Instruction Error Profile  Customized Ultra Low-Cost Resiliency
	Slide Number 47
	Slide Number 48
	Data Error Profile  Approximate Computing
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Outline
	Minotaur: Key Idea
	Minotaur
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Outline
	Deep Neural Networks (DNNs)
	HarDNN: Approach
	HarDNN Challenges
	What Granularity Components to Target?
	What Granularity Components to Target?
	Feature Map (Fmap) Granularity
	How to Estimate Feature Map Vulnerability
	Loss: Continuous Metric for Error Propagation
	Loss: Continuous Metric for Error Propagation
	Loss: Continuous Metric for Error Propagation
	Loss: Continuous Metric for Error Propagation
	Mismatch vs. Loss: Which Converges Faster?
	How to Protect?
	Overhead vs. Coverage
	Outline
	ApproxTuner: Hardware + Software Approx
	ApproxTuner Innovations
	GPU Speedup and Energy Reduction
	Slide Number 85
	Slide Number 86
	Outline
	Towards a Discipline for Error-Efficient Systems
	Towards a Discipline for Error-Efficient Systems

