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ABSTRACT

Power consumption is one of the most important factors in the design of today’s processor chips. Multicore

and heterogeneous systems have emerged to address the rising power concerns. Since the memory hierarchy

is becoming one of the major consumers of the on-chip power budget in these systems [73], designing

an efficient memory hierarchy is critical to future systems. We identify three sources of inefficiencies in

memory hierarchies of today’s systems: (a) coherence, (b) data communication, and (c) data storage. This

thesis takes the stand that many of these inefficiencies are a result of today’s software-agnostic hardware

design. There is a lot of information in the software that can be exploited to build an efficient memory

hierarchy. This thesis focuses on identifying some of the inefficiencies related to each of the above three

sources, and proposing various techniques to mitigate them by exploiting information from the software.

First, we focus on inefficiencies related to coherence and communication. Today’s hardware based direc-

tory coherence protocols are extremely complex and incur unnecessary overheads for sending invalidation

messages and maintaining sharer lists. We propose DeNovo, a hardware-software co-designed protocol, to

address these issues for a class of programs that are deterministic. DeNovo assumes a disciplined program-

ming environment and exploits features such as structured parallel control, data-race-freedom, and software

information about data access patterns to build a system that is simple, extensible, and performance-efficient

compared to today’s protocols. We also extend DeNovo to add two optimizations to address the inefficien-

cies related to data communication, specifically, aimed at reducing the unnecessary on-chip network traffic.

We show that adding these two optimizations did not only result in addition of zero new states (or transient

states) to the protocol but also provided performance and energy gains to the system, thus validating the

extensibility of the DeNovo protocol. Together with the two communication optimizations DeNovo reduces

the memory stall time by 32% and the network traffic by 36% (resulting in direct savings in energy) on

average compared to a state-of-the-art implementation of the MESI protocol for the applications studied.

Next we address the inefficiencies related to data storage. Caches and scratchpads are two popular
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organizations for storing data in today’s systems but they both have inefficiencies. Caches are power-hungry

incurring expensive tag lookups and scratchpads incur unnecessary data movement as they are only locally

visible. To address these problems, we propose a new memory organization, stash, which has the best of both

cache and scratchpad organizations. Stash is a globally visible unit and its functionality is independent of the

coherence protocol employed. In our implementation, we extend DeNovo to provide coherence for stash.

Compared to a baseline configuration that has both scratchpad and cache accesses, we show that the stash

configuration (in which scratchpad and cache accesses are converted to stash accesses), even with today’s

applications that do not fully exploit stash, reduces the execution time by 10% and the energy consumption

by 14% on average.

Overall, this thesis shows that a software-aware hardware design can effectively address many of the

inefficiencies found in today’s software oblivious memory hierarchies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent advances in semiconductor technology have helped Moore’s law to continue. In the past, when

leakage current was minimal, increased chip densities accompanied with supply voltage scaling resulted in

constant power consumption for a given area of the chip. Unfortunately, with the recent breakdown of the

classical CMOS voltage scaling, power has become a first class problem in the design of processor chips

leading to new research directions in the field of computer architecture.

Multicores are one such attempt to address the rising power consumption problem. Alternately, hetero-

geneous systems take a different approach where power efficient individual components (e.g., GPU, DSP,

FPGA, accelerators, etc.) are specialized for various problem domains as opposed to a general-purpose

homogeneous multicore system. However, these specialized components differ in many aspects includ-

ing ISAs, functionality, and underlying memory models and hierarchy. These differences imply difficulty

in building a power efficient heterogeneous system that can be effectively used. Both standalone multi-

cores and a cluster of specialized components have their own advantages and disadvantages. Hence we

are increasingly seeing the trend towards hybrid systems which have part multicore and part specialized

components [82, 73, 32, 68].

With the rise of such hybrid systems, today’s computer systems, from smartphones to servers, are more

complex than ever before. Data movement in these systems is expected to become the dominant consumer

of energy as technology continues to scale [73]. For example, a recent study has shown that by 2017 more

than 50% of the total energy for a 64-bit GPU floating-point computation will be spent in the memory

access (reading three source operands and writing to a destination operand from/to an 8KB SRAM) [73].
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This highlights the urgent need for minimizing data movement and an energy-efficient memory hierarchy

for future scalable computer systems.

Shared-memory is arguably the most widely used parallel programming model. Today’s shared-memory

hierarchies have several inefficiencies. In this thesis, we focus on homogeneous multicores and heteroge-

neous SoC systems. In multicores, complex directory-based coherence protocols, inefficient data transfers,

and power-inefficient caches make it hard to design performance-, power-, and complexity-scalable hard-

ware. These inefficiencies are exacerbated as more and more cores are added to the system. Traditionally,

memory units of different components in heterogeneous SoC systems are only loosely coupled with respect

to one another. Any communication between the components required interaction through main memory,

which incurs unnecessary data movement and latency overheads. Recent designs such as AMD’s Fusion [32]

and Intel’s Haswell [68] address this issue by creating more tightly coupled systems with a single unified

address space and coherent caches. By tightly coupling the cores, data can be sent from one component to

another without needing the explicit transfer through the main memory. However, these architectures have

other inefficiencies in the memory hierarchy. For example, these systems provide only partial coherence and

local memories are not globally accessible.

Many of these problems of shared-memory systems are because of today’s software agnostic hardware

design. They can be mitigated by having more disciplined programming models and by exploiting the infor-

mation that is already available in the software. Many of today’s undisciplined programming models allow

arbitrary reads and writes for implicit and unstructured communication and synchronization. This results in

“wild shared-memory” behaviors with unintended data races and non-determinism and implicit side effects.

The same phenomena result in complex hardware that must assume that any memory access may trigger

communication, and performance- and power-inefficient hardware that is unable to exploit communication

patterns known to the programmer but obfuscated by the programming model. There is much recent soft-

ware work on more disciplined shared-memory programming models to address the above problems. We

believe that exploiting the guarantees provided by such disciplined programming models will help us alle-

viate some of the inefficiencies in the memory hierarchy. Also applications have a lot of other information

that could be utilized by the hardware to be more efficient. Applications for heterogeneous systems (e.g.,

using CUDA and OpenCL programming models) have additional information like which data is commu-

nicated between the CPU and the accelerator, which parts of the main memory are explicitly assigned to a
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local scratchpad, which data is read only, and so on. Such information (if available to the hardware) can be

exploited to design efficient data communication and storage. Hence software-aware hardware that exploits

information from the software will help us rethink today’s memory hierarchy to achieve energy-efficient and

complexity-scalable hardware.

1.2 Inefficiencies in Today’s Memory Hierarchies

We identify three broad classes of problems with today’s shared-memory systems:

Inefficiencies with techniques used for sharing data (a.k.a. coherence protocols): Hardware based

directory coherence protocols used in today’s shared memory systems have several limitations. They are

extremely complex and incur high verification overhead because of numerous transient states and subtle

races; incur additional traffic for invalidation and acknowledgement messages; incur high storage overhead

to keep track of sharer lists; and suffer from false sharing due to aggregated cache state.

Inefficiencies with how data is communicated: Today’s cache-line granularity data transfers are not al-

ways optimal. Cache line transfers are easy to implement but incur additional network traffic for unused

words in the cache line. Moreover, traditional request and response traffic that flows through the cache hier-

archy and mandatory hop at the directory may not be always required (e.g. read-only streaming data, known

producer, and so on).

Inefficiencies with how data is stored: Caches and scratchpads are two common types of memory or-

ganizations that today’s memory hierarchies support. Caches are easy to program (largely invisible to the

programmer) but are power inefficient due to tag lookups and misses. They also store data at cache line

granularity which is not always optimal. Scratchpads, in contrast, are energy- and delay-efficient compared

to caches with their guaranteed hits. But scratchpads are only locally visible (requiring explicit programmer

support) and hence need explicit copying of data from and to main memory. This typically results in explicit

data movement, executing additional instructions, usage of core’s registers, incurring additional network

traffic, and polluting the cache.

3



1.3 Contributions of this Thesis

In this thesis, we analyze each of the above three types of memory hierarchy inefficiencies, find ways to

exploit information available in software, and propose solutions to mitigate them to make hardware more

energy-efficient. We limit our focus to deterministic codes in this thesis for multiple reasons: (1) There is

a growing view that deterministic algorithms will be common, at least for client-side computing [1]; (2)

focusing on these codes allows us to investigate the “best case;” i.e., the potential gain from exploiting

strong discipline; (3) these investigations form a basis to develop the extensions needed for other classes

of codes (pursued partly for this thesis and partly by other members of the larger project). Synchronization

mechanisms involve races and are used in all classes of codes; in this thesis, we assume special techniques to

implement them (e.g., hardware barriers, queue based locks, etc.). Their detailed handling is explored by the

larger project (some of this work is described below) and is not part of this thesis. The specific contributions

of this thesis are as follows.

1.3.1 DeNovo: Addressing Coherence and Communication Inefficiencies

DeNovo [45] addresses the many inefficiencies of today’s hardware based directory coherence protocols.1

It assumes a disciplined programming environment and exploits properties of such environments like struc-

tured parallel control, data-race-freedom, deterministic execution, and software information about which

data is shared and when. DeNovo uses Deterministic Parallel Java (DPJ) [28, 29] as an exemplar disciplined

language providing these properties. Two key insights underlie DeNovo’s design. First, structured parallel

control and knowing which memory regions will be read or written enable a cache to take responsibility for

invalidating its own stale data. Such self-invalidations remove the need for a hardware directory to track

sharer lists and to send invalidations and acknowledgements on writes. Second, data-race-freedom elimi-

nates concurrent conflicting accesses and corresponding transient states in coherence protocols, eliminating

a major source of complexity. Specifically, DeNovo provides the following benefits.

Simplicity: To provide quantitative evidence of the simplicity of the DeNovo protocol, we compared it

with a conventional MESI protocol [108] by implementing both in the Murphi model checking tool [54].

For MESI, we used the implementation in the Wisconsin GEMS simulation suite [94] as an example of a
1I co-led the design and evaluation of the DeNovo protocol with my colleagues, Byn Choi and Hyojin Sung [45]. This work

will also appear in Hyojin Sung’s thesis. I was solely responsible for the verification work for the DeNovo protocol [78]. This work
also appears in my M.S. thesis and is presented here for completeness.
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(publicly available) state-of-the-art, mature implementation. We found several bugs in MESI that involved

subtle data races and took several days to debug and fix. The debugged MESI showed 15X more reachable

states compared to DeNovo, with a verification time difference of 173 seconds vs 8.66 seconds [78]. These

results attest to the complexity of the MESI protocol and the relative simplicity of DeNovo.

Extensibility: To demonstrate the extensibility of the DeNovo protocol, we implemented two optimizations

addressing inefficiencies related to data communication: (1) Direct cache-to-cache transfer: Data in a re-

mote cache may directly be sent to another cache without indirection to the shared lower level cache (or

directory). (2) Flexible communication granularity: Instead of always sending a fixed cache line in response

to a demand read, we send a programmer directed set of data associated with the region information of the

demand read. Neither optimization required adding any new protocol states to DeNovo; since there are no

sharer lists, valid data can be freely transferred from one cache to another.

Storage overhead: The DeNovo protocol incurs no storage overhead for directory information. But we

need to maintain coherence state bits and additional information at the granularity at which we guarantee

data-race freedom, which can be less than a cache line. For low core counts, this overhead is higher than

with conventional directory schemes, but it pays off after a few tens of cores and is scalable (constant per

cache line). A positive side effect is that it is easy to eliminate the requirement of inclusivity in a shared last

level cache (since we no longer track sharer lists). Thus, DeNovo allows more effective use of shared cache

space.

Performance and power: In our evaluations, we show that the DeNovo coherence protocol along with the

communication optimizations described above reduces an average 32% (up to 77%) of the memory stall time

and an average reduction of 36% (up to 71.5%) of the network traffic compared to MESI. The reductions in

network traffic have direct implications on energy savings.

1.3.2 Stash: Addressing Storage Inefficiencies

The memory hierarchies of heterogeneous SoCs are often loosely coupled and require explicit communica-

tion through main memory to interact. This results in unnecessary data movement and latency overheads. A

more tightly coupled SoC memory hierarchy helps address these problems, but doesn’t remove all sources

of inefficiency such as power-inefficient cache accesses and scratchpads that are only locally visible. To
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combat this, we introduce a new memory organization called a stash2 [79] that has the best properties of

both scratchpads and caches. Similar to a scratchpad, stash is software managed, directly addressable, and

provides compact data storage. Stash also has a mapping between the global and stash address spaces. This

helps stash to be globally visible and replicate data like a cache. Replication needs support for coherence

and any existing protocol can be extended to support stash. In this thesis, we extend the simple and efficient

DeNovo protocol to support coherence for stash. Our results show that, compared to a baseline configuration

that has both scratchpad and global cache accesses, the stash configuration (that converts all scratchpad and

global accesses to stash accesses) reduces the execution time by 10% and the energy consumption by 14%

on average.

1.4 Other Contributions

I have contributed to some other works in the larger project that this thesis is a part of but are not included

in this thesis. This section provides a brief summary of these works.

1.4.1 Understanding the Properties of Disciplined Software

The DeNovo protocol introduced above exploits several properties of a disciplined programming environ-

ment. To understand these properties well and explore how to exploit them in hardware, we studied the

language and also actively contributed to the evaluations of DPJ [28, 29], the driver language for DeNovo.

Specifically, I have ported several applications to DPJ and performed application analysis to understand

what information could be exploited in hardware.

1.4.2 DeNovoND: Support for Disciplined Non-determinism

DeNovo focuses on a class of programs that are deterministic. DeNovoND [130, 131] takes a step forward

and extends DeNovo to support programs with disciplined non-determinism. DPJ permits disciplined non-

determinism by permitting conflicting accesses, but constraining them to occur within well defined atomic

sections with explicitly declared atomic regions and effects [29]. We have shown that modest extensions to

DeNovo can allow this form of non-determinism without sacrificing its advantages. The resulting system,

DeNovoND, provides comparable or better performance than MESI for several applications designed for
2I co-led the work on stash with my colleague, Matthew D. Sinclair.
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lock synchronization, and shows 33% less network traffic on average, implying potential energy savings.

My specific contributions to DeNovoND are designing and implementing queue based locks in hardware.

1.5 Outline of the Thesis

This thesis is organized as follows. Chapter 2 describes our solutions to address the coherence and com-

munication inefficiencies. In this chapter, we describe the DeNovo coherence protocol and the two com-

munication optimizations that extend DeNovo. Chapter 3 provides a complexity analysis of DeNovo by

formally verifying it and comparing the effort against that of a state-of-the-art implementation of MESI. We

provide performance analysis of DeNovo in Chapter 4. In Chapter 5, we introduce stash that addresses the

storage inefficiencies. We provide performance evaluation of the stash organization in Chapter 6. Chapter 7

describes the prior work. Finally, Chapter 8 summarizes the thesis and provides directions for future work.

1.6 Summary

On-chip energy has become one of the primary constraints in building computer systems. Today’s complex

and software-oblivious systems have several inefficiencies which are hindrances for building future energy-

efficient systems. This thesis takes the stand that there is a lot of information in the software that can be

exploited to remove these inefficiencies. We focus on three sources of inefficiencies in today’s memory

hierarchies: (a) coherence, (b) data communication, and (c) data storage.

Specifically, we propose a simple and scalable hardware-software co-designed DeNovo coherence pro-

tocol to address inefficiencies in today’s complex hardware directory based protocols. We extend DeNovo

with two optimizations that are aimed at reducing the unnecessary on-chip network traffic addressing the

inefficiencies in data communication. Finally, to address several inefficiencies with data storage, we propose

a new memory organization, stash, that has the best of both scratchpad and cache organizations.

Together, we show that a true software-hardware co-designed system that exploits information from

software makes for an efficient system compared to today’s largely software-oblivious systems.
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CHAPTER 2

COHERENCE AND COMMUNICATION

In a shared-memory system, coherence is required when multiple compute units (homogeneous or hetero-

geneous) replicate and modify the same data. Coherence is usually associated with cache memory organiza-

tion. But similar to caches, there are other memory organizations like stash, as described in Chapter 5, that

hold globally addressable and replicable data, which require coherence too. Shared-memory systems typ-

ically implement coherence with snooping or directory-based protocols in the hardware. Although current

directory-based protocols are more scalable than snooping protocols, they suffer from several limitations:

Performance and power overhead: They incur several sources of latency and traffic overhead, impacting

performance and power; e.g., they require invalidation and acknowledgment messages (which are strictly

overhead) and indirection through the directory for cache-to-cache transfers.

Verification complexity and extensibility: They are notoriously complex and difficult to verify since they

require dealing with subtle races and many transient states (Section 2.1.2) [103, 60]. Furthermore, their

fragility often discourages implementors from adding optimizations to previously verified protocols – addi-

tions usually require re-verification due to even more states and races.

State overhead: Directory protocols incur high directory storage overhead to track sharer lists. Several op-

timized directory organizations have been proposed, but also require considerable overhead and/or excessive

network traffic and/or complexity. These protocols also require several coherence state bits due to the large

number of protocol states (e.g., ten bits in [115]). This state overhead is amortized by tracking coherence at

the granularity of cache lines. This can result in performance/power anomalies and inefficiencies when the

granularity of sharing is different from a contiguous cache line (e.g., false sharing).

Researchers continue to propose new hardware directory organizations and protocol optimizations to

address one or more of the above limitations (Section 7.1); however, all of these approaches incur one or
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more of complexity, performance, power, or storage overhead. In this chapter, we describe DeNovo, a

hardware-software co-designed approach, that exploits emerging disciplined software properties in addi-

tion to data-race-freedom to target all the above mentioned limitations of directory protocols for large core

counts. Next, we describe these disciplined software properties that DeNovo exploits and some insight into

how complex today’s hardware protocols are.

2.1 Background

2.1.1 Disciplined Parallel Models and Deterministic Parallel Java (DPJ)

There has been much recent research on disciplined shared-memory programming models with explicit and

structured communication and synchronization for both deterministic and non-deterministic algorithms [1];

e.g., Ct [59], CnC [33], Cilk++ [26], Galois [81], SharC [11], Kendo [107], Prometheus [9], Grace [21],

Axum [61], and Deterministic Parallel Java (DPJ) [28, 29].

We employ Deterministic Parallel Java (DPJ) [28] as an exemplar of the emerging class of deterministic-

by-default languages, and use it to explore how hardware can take advantage of strong disciplined program-

ming features. Specifically, we use three features of DPJ that are also common to several other projects: (1)

structured parallel control; (2) data-race-freedom, and guaranteed deterministic semantics unless the pro-

grammer explicitly requests non-determinism (called determinism-by-default); and (3) explicit specification

of the side effects of parallel sections; e.g., which (possibly non-contiguous) regions of shared-memory will

be read or written in a parallel section.

Most of the disciplined models projects cited above also enforce a requirement of structured parallel

control (e.g., a nested fork join model, pipelining, etc.), which is much easier to reason about than arbitrary

(unstructured) thread synchronization. Most of these guarantee the absence of data races for programs that

type-check. Coupled with structured parallel control, the data-race-freedom property guarantees determin-

ism for several of these systems. We also note that data races are prohibited (although not checked) by

existing popular languages as well; the latest C++ and C memory models [30] do not provide any semantics

with any data race (benign or otherwise) and Java [92] provides extremely complex and weak semantics for

data races only for the purposes of ensuring safety. The information about side effects of concurrent tasks is

also available in other disciplined languages, but in widely varying (and sometimes indirect) ways.
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DPJ is an extension to Java that enforces deterministic-by-default semantics via compile-time type

checking [28, 29]. Using Java is not essential; similar extensions for C++ are possible. DPJ provides a

new type and effect system for expressing important patterns of deterministic and non-deterministic paral-

lelism in imperative, object-oriented programs. Non-deterministic behavior can only be obtained via certain

explicit constructs. For a program that does not use such constructs, DPJ guarantees that if the program is

well-typed, any two parallel tasks are non-interfering, i.e., do not have conflicting accesses. (Two accesses

conflict if they reference the same location and at least one is a write.)

DPJ’s parallel tasks are iterations of an explicitly parallel foreach loop or statements within a cobegin

block; they synchronize through an implicit barrier at the end of the loop or block. Parallel control flow thus

follows a scoped, nested, fork-join structure, which simplifies the use of explicit coherence actions in DeN-

ovo at fork/join points. This structure defines a natural ordering of the tasks, as well as an obvious definition

of when two tasks are “concurrent”. It implies an obvious sequential equivalent of the parallel program (for

replaces foreach and cobegin is simply ignored). DPJ guarantees that the result of a parallel execution

is the same as the sequential equivalent.

In a DPJ program, the programmer assigns every object field or array element to a named “region” and

annotates every method with read or write “effects” summarizing the regions read or written by that method.

The compiler checks that (i) all program operations are type safe in the region type system; (ii) a method’s

effect summaries are a superset of the actual effects in the method body; and (iii) that no two parallel

statements interfere. The effect summaries on method interfaces allow all these checks to be performed

without interprocedural analysis.

For DeNovo, the effect information tells the hardware what fields will be read or written in each par-

allel “phase” (foreach or cobegin). This enables efficient software-controlled coherence mechanisms

discussed in the following sections.

DPJ has been evaluated on a wide range of deterministic parallel programs. The results show that DPJ

can express a wide range of realistic parallel algorithms; that its type system features are useful for such

programs; and that well-tuned DPJ programs exhibit good performance [28].

In addition to guaranteeing determinism, DPJ was later extended to provide strong safety properties

such as data-race-freedom, strong isolation, and composition for non-deterministic code sections [29]. This

is achieved by ensuring that conflicting accesses in concurrent tasks are confined to atomic sections and
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their regions and effects are explicitly annotated as atomic. In this thesis, we focus only on the deterministic

codes.

2.1.2 Complexity of Traditional Coherence Protocols

To understand the complexity of today’s directory-based protocols [78], we briefly discuss the details of

a state-of-the-art, mature, publicly available protocol, the MESI protocol implemented in the Wisconsin

GEMS simulation suite (version 2.1.1) [94]. Without loss of generality, we assume a multicore system with

n cores, private L1 caches, a shared L2 cache, and a general (non-bus, unordered) interconnect on chip.
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Figure 2.1Textbook state transition diagram for L1 cache of core i for the MESI protocol. Readi =
read from core i, Readk = read from another core k.

MESI, also known as the Illinois protocol [108], stands for Modified (locally modified and no other

cache has a copy), Exclusive (unmodified and no other cache has a copy), Shared (unmodified and some

other caches may have a copy), and Invalid. Over the MSI protocol, the Exclusive state has the added

advantage of avoiding invalidation traffic on write hits. For scalability, we assume a directory protocol [86].

Given our shared (inclusive) L2 cache based multicore, we assume a directory entry per L2 cache line,

referred to as an in-cache directory [39]. We use L2 and directory interchangeably.

Figure 2.1 shows the simple textbook state transition diagram for an L1 cache with the MESI proto-

col. The L2 cache also has four (textbook) states, L1 Modified (modified in a local L1), L2 Modified
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Figure 2.2 Example state transitions for MESI.

(modified at L2 and not present in any L1), Shared (valid data at L2 and present in one or more L1s) and

Invalid. It also has a dirty bit (set on receiving a writeback from L1) which indicates whether data is dirty

or not. When in Shared state, the L2/directory contains the up-to-date copy of the cache block data along

with a list of sharers. On a read miss request, the directory services the request if it has the up-to-date copy,

or else it forwards the request to the core that has the exclusive or modified copy. On a write miss or upgrade

request, the directory sends invalidation requests to all the sharers (if any). If a request misses in the L2,

the block is fetched from the main memory.

In reality, this seemingly simple protocol is a lot more complex. The hardware implementation of the

protocol has many transient states in addition to the four states described above. These transient states lead

to various subtle races and are the root cause of the complexity in the protocol. We now illustrate the need

for transient states with an example. Figure 2.2(a) shows a code snippet with two parallel phases accessing

a shared variable A.
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In the first phase, cores P2 through Pn read the shared variable A and in the second phase, core P1

writes to A. In this example, we focus mainly on the state transitions related to this write by core P1.

Figure 2.2(b) shows the timeline of the state transitions at both the individual L1s and the L2. Fig-

ures 2.2(c) and 2.2(d) show the state transition table for L1 and L2 respectively for the states encountered

in this example. The names of the states and the events are taken directly from the GEMS implementation.

At the beginning of the second phase, cores P2 through Pn are in Shared state and they are recorded in

the sharer list at the directory. On receiving the write request, L1P1 issues a GETX request to L2 and

transitions to the first transient state, IM , where it awaits the data response from L2. L2, on receiving the

GETX request, sends the data response (including the number of Acks to expect) to L1P1, sends invali-

dation requests to all the sharers (L1P2 through L1Pn), and then transitions to a transient state, SS MB,

where it awaits an unblock message from the original requestor indicating the completion of the request.

L1P1, on receiving the data response from L2, transitions to the second transient state, SM , where it waits

for all the Ack messages from the sharers. Every sharer, then, on receiving the invalidation message from

L2, transitions to the Invalid state and responds directly to the requestor, L1P1, with an Ack message.

When L1P1 receives the last Ack message (Ack all event), it transitions to the Modified state and un-

blocks L2 by sending an Exclusive Unblock message. Other cases (e.g., some of the Acks arriving at

L1P1 before it receives the data response from L2, etc.) are covered in the state transition tables shown in

Figures 2.2(c) and 2.2(d). Ack all is triggered for the last incoming Ack and Data Ack all is triggered if

L2’s data response (which includes the Ack count) is the last message to be received.

This example illustrates the need for transient states and the additional complexities introduced by them

in the MESI protocol. The larger the number of transient states, the more complex the protocol becomes.

In the GEMS implementation of the MESI protocol, there are seven transient states in L1 and 14 transient

states in L2. Optimizations to the above baseline protocol usually incur additional transient states.

2.2 DeNovo

In this section, we describe how we exploit various features of disciplined programming languages men-

tioned earlier to redesign a hardware coherence protocol that is not only complexity-efficient but also energy-

and performance-efficient compared to traditional protocols.

A shared-memory design must first and foremost ensure that a read returns the correct value, where the
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definition of “correct” comes from the memory consistency model. Modern systems divide this responsibil-

ity between two parts: (i) cache coherence, and (ii) various memory ordering constraints. These are arguably

among the most complex and hard to scale aspects of shared-memory hierarchy design. Disciplined models

enable mechanisms that are potentially simpler and more efficient to achieve this function.

The deterministic parts of our software have semantics corresponding to those of the equivalent sequen-

tial program. A read should therefore simply return the value of the last write to the same location that is

before it in the deterministic sequential program order. This write either comes from the reader’s own task

(if such a write exists) or from a task preceding the reader’s task, since there can be no conflicting accesses

concurrent with the reader (two accesses are concurrent if they are from concurrent tasks). In contrast, con-

ventional (software-oblivious) cache coherence protocols assume that writes and reads to the same location

can happen concurrently, resulting in significant complexity and inefficiency.

To describe the DeNovo protocol, we first assume that the coherence granularity and address/communi-

cation granularity are the same. That is, the data size for which coherence state is maintained is the same

as the data size corresponding to an address tag in the cache and the size communicated on a demand miss.

This is typically the case for MESI protocols, where the cache line size (e.g., 64 bytes) serves as the address,

communication, and coherence granularity. For DeNovo, the coherence granularity is dictated by the granu-

larity at which data-race-freedom is ensured – a word for our applications. Thus, this assumption constrains

the cache line size. We henceforth refer to this as the word based version of our protocol. We relax this

assumption in Section 2.2.2, where we decouple the address/communication and coherence granularities

and also enable sub-word coherence granularity.

Without loss of generality, throughout we assume private and writeback L1 caches, a shared last-level on-

chip L2 cache inclusive of only the modified lines in any L1, a single (multicore) processor chip system, and

no task migration. The ideas here extend in an obvious way to deeper hierarchies with multiple private and/or

cluster caches and multichip multiprocessors, and task migration can be accommodated with appropriate

self-invalidations before migration. Below, we use the term phase to refer to the execution of all tasks

created by a single parallel construct (foreach or cobegin).

2.2.1 DeNovo with Equal Address/Communication and Coherence Granularity

DeNovo eliminates the drawbacks of conventional directory protocols as follows.
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No directory storage or write invalidation overhead: In conventional directory protocols, a write acquires

ownership of a line by invalidating all other copies, to ensure later reads get the updated value. The directory

achieves this by tracking all current sharers and invalidating them on a write, incurring significant storage

and invalidation traffic overhead. In particular, straightforward bit vector implementations of sharer lists are

not scalable. Several techniques have been proposed to reduce this overhead, but typically pay a price in

significant increase in complexity and/or incurring unnecessary invalidations when the directory overflows.

DeNovo eliminates these overheads by removing the need for invalidations on a write. Data-race-freedom

ensures there is no other writer or reader for that line in this parallel phase. DeNovo need to only ensure that

(i) outdated cache copies are invalidated before the next phase, and (ii) readers in later phases know where

to get the new data.

For (i), each cache simply uses the known write effects of the current phase to invalidate its outdated data

before the next phase begins. The compiler inserts self-invalidation instructions for each region with these

write effects (we describe how regions are conveyed and represented below). Each L1 cache invalidates its

data that belongs to these regions with the following exception. Any data that the cache has read or written

in this phase is known to be up-to-date since there cannot be concurrent writers. We therefore augment each

line with a “touched” bit that is set on a read. A self-invalidation instruction does not invalidate a line with

a set touched bit or that was last written by this core (indicated by the registered state as discussed

below); the instruction resets the touched bit in preparation for the next phase.

For (ii), DeNovo requires that on a write, a core register itself at (i.e., inform) the shared L2 cache. The

L2 data banks serve as the registry. An entry in the L2 data bank either keeps the identity of an L1 that

has the up-to-date data (registered state) or the data itself (valid state) – a data bank entry is never

required to keep both pieces of information since an L1 cache registers itself in precisely the case where the

L2 data bank does not have the up-to-date data. Thus, DeNovo entails zero overhead for directory (registry)

storage. Henceforth, we use the term L2 cache and registry interchangeably.

We also note that because the L2 does not need sharer lists, it is natural to not maintain inclusion in the

L2 for lines that are not registered by another L1 cache – the registered lines do need space in the L2 to track

the L1 id that registered them.

No transient states: The DeNovo protocol has three states in the L1 and L2 – registered, valid, and

invalid – with obvious meaning. (The touched bit mentioned above is local to its cache and irrelevant
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to external coherence transactions.) As described in Section 2.1.2, conventional directory protocols require

several transient states making them notoriously complex and difficult to verify [4, 125, 140]. DeNovo, in

contrast, is a true 3-state protocol with no transient states, since it assumes race-free software. The only

possible races are related to writebacks. As discussed below, these races either have limited scope or are

similar to those that occur in uniprocessors. They can be handled in straightforward ways, without transient

protocol states (described below).
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Figure 2.3 Example state transitions for DeNovo.

Let us revisit the code segment from Figure 2.2. Figure 2.3(a) shows the changes to the code required

to prove data-race-freedom. Specifically, the shared variable A is placed in a region RA, both the parallel

phases are annotated with read and write effect summaries, and finally a self-invalidation instruction is

inserted at the end of the second phase.

Figure 2.3(b) shows the timeline of the state transitions for the DeNovo protocol and the state transition

tables for the states encountered in this example are shown in Figures 2.3(c) and 2.3(d). Focusing again

on the write instruction in the second phase, L1P1 transitions directly to the Registered state without

transitioning to any transient state and sends a registration request to L2. L2, on receiving the registration

request, transitions to the Registered state. We do not show the registration response message from L2
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here as it is not in the critical path and is handled by the request buffer at L1. At the end of the phase, each

core executes a self-invalidate instruction on region RA. This instruction triggers the invalidation of all the

data in region RA in the L1 cache of its core except for data in Registered state and that is both V alid

and touched, since this data is known to be up-to-date. The touched bits are reset at the end of the parallel

phase. This example illustrates how the absence of transient states makes the DeNovo protocol simpler than

MESI.

The full protocol: Table 2.1 shows the L1 and L2 state transitions and events for the full protocol. Note the

lack of transient states in the caches.

Read requests to the L1 (from L1’s core) are straightforward – accesses to valid and registered state are

hits and accesses to invalid state generate miss requests to the L2. A read miss does not have to leave the

L1 cache in a pending or transient state – since there are no concurrent conflicting accesses (and hence no

invalidation requests), the L1 state simply stays invalid for the line until the response comes back.

For a write request to the L1, unlike a conventional protocol, there is no need to get a “permission-

to-write” since this permission is implicitly given by the software race-free guarantee. If the cache does

not already have the line registered, it must issue a registration request to the L2 to notify that it has the

current up-to-date copy of the line and set the registry state appropriately. Since there are no races as show

in Figure 2.3, the write can immediately set the state of the cache to registered, without waiting for the

registration request to complete. Thus, there is no transient or pending state for writes either.

The pending read miss and registration requests are simply monitored in the processor’s request buffer,

just like those of other reads and writes for a single core system. Thus, although the request buffer techni-

cally has transient states, these are not visible to external requests – external requests only see stable cache

states. The request buffer also ensures that its core’s requests to the same location are serialized to respect

uniprocessor data dependencies, similar to a single core implementation (e.g., with MSHRs). The memory

model requirements are met by ensuring that all pending requests from the core complete by the end of this

parallel phase (or at least before the next conflicting access in the next parallel phase).

The L2 transitions are also straightforward except for writebacks which require some care. A read or

registration request to data that is invalid or valid at the L2 invokes the obvious response. For a request

for data that is registered by an L1, the L2 forwards the request to that L1 and updates its registration id if

needed. For a forwarded registration request, the L1 always acknowledges the requestor and invalidates its
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Readi Writei Readk Registerk Response for Writeback
Readi

Invalid Update tag; Go to Registered; Nack to core Reply to core k If tag match, Ignore
Read miss Reply to core i; core k go to V alid

to L2; Register request to L2; and load data;
Writeback Write data; Reply to core i
if needed Writeback if needed

V alid Reply to Go to Registered; Send data to Go to Invalid; Reply to core i Ignore
core i Reply to core i; core k Reply to core k

Register request to L2
Registered Reply to Reply to core i Reply to Go to Invalid; Reply to core i Go to Valid;

core i core k Reply to core k Writeback

(a) L1 cache of core i. Readi = read from core i, Readk = read from another core k (forwarded by the registry).

Read miss from Register request from Read response from Writeback from core
core i core i memory for core i core i

Invalid Update tag; Go to Registeredi; If tag match, Reply to core i;
Read miss to memory; Reply to core i; go to V alid and load data; Generate reply for pending
Writeback if needed Writeback if needed Send data to core i writeback to core i

V alid Data to core i Go to Registeredi; X X
Reply to core i

Registeredj Forward to core j; Forward to core j; X if i==j go to V alid and
Done Done load data;

Reply to core i;
Cancel any pending
Writeback to core i

(b) L2 cache

Table 2.1 DeNovo cache coherence protocol for (a) private L1 and (b) shared L2 caches. Self-
invalidation and touched bits are not shown here since these are local operations as described in the
text. Request buffers (MSHRs) are not shown since they are similar to single core systems.

own copy. If the copy is already invalid due to a concurrent writeback by the L1, the L1 simply acknowledges

the original requestor and the L2 ensures that the writeback is not accepted (by noting that it is not from

the current registrant). For a forwarded read request, the L1 supplies the data if it has it. If it no longer

has the data (because it issued a concurrent writeback), then it sends a negative acknowledgement (nack) to

the original requestor, which simply resends the request to the L2. Because of race-freedom, there cannot

be another concurrent write, and so no other concurrent writeback, to the line. Thus, the nack eventually

finds the line in the L2, without danger of any deadlock or livelock. The only somewhat less straightforward

interaction is when both the L1 and L2 caches want to writeback the same line concurrently, but this race

also occurs in uniprocessors.

Conveying and representing regions in hardware: A key research question is how to represent regions

in hardware for self-invalidations. Language-level regions are usually much more fine-grain than may be

practical to support in hardware. For example, when a parallel loop traverses an array of objects, the com-
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piler may need to identify (a field of) each object as being in a distinct region in order to prove the absence

of conflicts. For the hardware, however, such fine distinctions would be expensive to maintain. Fortunately,

we can coarsen language-level regions to a much smaller set without losing functionality in hardware. The

key insight is as follows. We need regions to identify which data could have been written in the current

phase for a given core to self-invalidate potentially stale data. It is not important for the self-invalidating

core to distinguish which core wrote which data. In the above example, we can thus treat the entire array of

objects as one region. So on a self-invalidation instruction, a core self-invalidates all the data in this array

(irrespective of whichever core modified it) that is neither read or written by the given core in the given

parallel phase.

Alternately, if only a subset of the fields in each object in the above array is written, then this subset

aggregated over all the objects collectively forms a hardware region. Thus, just like software regions, hard-

ware regions need not be contiguous in memory – they are essentially an assignment of a color to each

heap location (with orders of magnitude fewer colors in hardware than software). Hardware regions are not

restricted to arrays either. For example, in a traversal of the spatial tree in an n-body problem, the compiler

distinguishes different tree nodes (or subsets of their fields) as separate regions; the hardware can treat the

entire tree (or a subset of fields in the entire tree) as an aggregate region. Similarly, hardware regions may

also combine field regions from different aggregate objects (e.g., fields from an array and a tree may be

combined into one region).

The compiler can easily summarize program regions into coarser hardware regions as above and insert

appropriate self-invalidation instructions. The only correctness requirement is that the self-invalidated re-

gions must cover all write effects for the phase. For performance, these regions should be as precise as

possible. For example, fields that are not accessed or read-only in the phase should not be part of these

regions. Similarly, multiple field regions written in a phase may be combined into one hardware region for

that phase, but if they are not written together in other phases, they will incur unnecessary invalidations.

During final code generation, the memory instructions generated can convey the region name of the

address being accessed to the hardware; since DPJ regions are parameterizable, the instruction needs to point

to a hardware register that is set at runtime (through the compiler) with the actual region number. When

the memory instruction is executed, it conveys the region number to the core’s cache. A straightforward

approach is to store the region number with the accessed data line in the cache. Now a self-invalidate
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instruction invalidates all data in the cache with the specified regions that is not touched or registered.

The above implementation requires storing region bits along with data in the L1 cache and matching

region numbers for self-invalidation. A more conservative implementation can reduce this overhead. At the

beginning of a phase, the compiler conveys to the hardware the set of regions that need to be invalidated in the

next phase – this set can be conservative, and in the worst case, represent all regions. Additionally, we replace

the region bits in the cache with one bit: keepValid. indicating that the corresponding data need not be

invalidated until the end of the next phase. On a miss, the hardware compares the region for the accessed

data (as indicated by the memory instruction) and the regions to be invalidated in the next phase. If there is

no match, then keepValid is set. At the end of the phase, all data not touched or registered are

invalidated and the touched bits reset as before. Further, the identities of the touched and keepValid

bits are swapped for the next phase. This technique allows valid data to stay in cache through a phase even

if it is not touched or registered in that phase, without keeping track of regions in the cache. The

concept can be extended to more than one such phase by adding more bits and if the compiler can predict

the self-invalidation regions for those phases.

Example: Figure 2.4 illustrates the above concepts. Figure 2.4(a) shows a code fragment with parallel

phases accessing an array, S, of structs with three fields each, X, Y, and Z. The X (respectively, Y and Z)

fields from all array elements form one DeNovo region. The first phase writes the region of X and self-

invalidates that region at the end. Figure 2.4(b) shows, for a two core system, the L1 and L2 cache states at

the end of Phase 1, assuming each core computed one contiguous half of the array. The computed X fields

are registered and the others are invalid in the L1’s while the L2 shows all X fields registered to the

appropriate cores. The example assumes that the caches contained valid copies of B and C from previous

computations.

2.2.2 DeNovo with Address/Communication Granularity > Coherence Granularity

To decouple the address/communication and coherence granularity, our key insight is that any data marked

touched or registered can be copied over to any other cache in valid state (but not as touched).

Additionally, for even further optimization (Section 2.6), we make the observation that this transfer can

happen without going through the registry/L2 at all (because the registry does not track sharers). Thus, no

serialization at a directory is required. When (if) this copy of data is accessed through a demand read, it
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Figure 2.4 (a) Code with DeNovo regions and self-invalidations and (b) cache state after phase 1 self-
invalidations and direct cache-to-cache communication with flexible granularity at the beginning of
phase 2. Xi represents S[i].X . Ci in L2 cache means the word is registered with Core i. Initially, all
lines in the caches are in valid state.

can be immediately marked touched. The presence of a demand read means there will be no concurrent

write to this data, and so it is indeed correct to read this value (valid state) and furthermore, the copy

will not need invalidation at the end of the phase (touched copy). The above copy does not incur false

sharing (nobody loses ownership) and, if the source is the non-home node, it does not require extra hops to

a directory.

With the above insight, we can easily enhance the baseline word-based DeNovo protocol from the previ-

ous section to operate on a larger communication and address granularity; e.g., a typical cache line size from

conventional protocols. However, we still maintain coherence state at the granularity at which the program

guarantees data race freedom; e.g., a word. On a demand request, the cache servicing the request can send

an entire cache line worth of data, albeit with some of the data marked invalid (those that it does not have as

touched or registered). The requestor then merges the valid words in the response message (that it

does not already have valid or registered) with its copy of the cache line (if it has one), marking all

of those words as valid (but not touched).

Note that if the L2 has a line valid in the cache, then an element of that line can be either valid (and

hence sent to the requestor) or registered (and hence not sent). Thus, for the L2, it suffices to keep just

one coherence state bit at the finer (e.g., word) granularity with a line-wide valid bit at the line granularity.1

As before, the id of the registered core is stored in the data array of the registered location.

This is analogous to sector caches – cache space allocation (i.e., address tags) is at the granularity of a
1This requires that if a registration request misses in the L2, then the L2 obtain the full line from main memory.
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line but there may be some data within the line that is not valid. This combination effectively allows ex-

ploiting spatial locality without any false sharing, similar to multiple writer protocols of software distributed

shared memory systems [74].

2.3 Flexible Coherence Granularity

Although the applications we studied did not have any data races at word granularity, this is not necessarily

true of all applications. Data may be shared at byte granularity, and two cores may incur conflicting con-

current accesses to the same word, but for different bytes. A straightforward implementation would require

coherence state at the granularity of a byte, which would be significant storage overhead. 2 Although pre-

vious work has suggested using byte based granularity for state bits in other contexts [90], we would like to

minimize the overhead.

We focus on the overhead in the L2 cache since it is typically much larger (e.g., 4X to 8X times larger)

than the L1. We observe that byte granularity coherence state is needed only if two cores incur conflicting

accesses to different bytes in the same word in the same phase. Our approach is to make this an infrequent

case, and then handle the case correctly albeit at potentially lower performance.

In disciplined languages, the compiler/runtime can use the region information to allocate tasks to cores

so that byte granularity regions are allocated to tasks at word granularities when possible. For cases where

the compiler (or programmer) cannot avoid byte granularity data races, we require the compiler to indicate

such regions to the hardware. Hardware uses word granularity coherence state. For byte-shared data such as

the above, it “clones” the cache line containing it in four places: place i contains the ith byte of each word

in the original cache line. If we have at least four way associativity in the L2 cache (usually the case), then

we can do the cloning in the same cache set. The tag values for all the clones will be the same but each

clone will have a different byte from each word, and each byte will have its own coherence state bit to use

(essentially the state bit of the corresponding word in that clone). This allows hardware to pay for coherence

state at word granularity while still accommodating byte granularity coherence when needed, albeit with

potentially poorer cache utilization in those cases.

Specifically, DeNovo uses three features of these programming models: (1) structured parallel control;
2The upcoming C and C++ memory models and the Java memory model do not allow data races at byte granularity; therefore,

we also do not consider a coherence granularity lower than that of a byte.
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(2) data-race-freedom with guarantees of deterministic execution; and (3) side effects of parallel sections.

2.4 Discussion

In this chapter we used DPJ as an exemplar language that provides all the features of a disciplined program-

ming language that DeNovo can exploit (Section 2.1.1). In Chapter 5 we describe how we apply DeNovo to

another language, CUDA, in the context of heterogeneous systems when we introduce a new memory orga-

nization called as stash. CUDA provides structured parallel control and partially provides data-race-freedom

with deterministic execution. Today’s heterogeneous systems require applications written in programming

languages such as CUDA and OpenCL to be data-race free even though no such guarantees are provided.

DeNovo described in this thesis needs the program to adhere to structured parallel control and deterministic

execution. For structured parallel control, the inherent assumption is that a barrier synchronization is the

only type of synchronization supported (this barrier can be across a subset of tasks). We assume that the

hardware has support for such barrier synchronization.

Yet another difference between today’s heterogeneous programming languages and DPJ is the lack of

region and effect information in languages like CUDA. DeNovo doesn’t necessarily need the region and

effect information for its functionality. When such information is not available, DeNovo can be conservative

and self-invalidate all the data except that is touched or in Registered state at synchronization points. If

the region and effect information is available, DeNovo can perform better by selectively self-invalidating

the data at the end of a parallel phase. We quantitatively discuss the benefit of using region and effect

information in Section 4.5.

2.5 Delayed Registrations

In Section 2.2.2 we made the communication and the address granularity to be larger than the coherence

granularity. However, the registration request granularity is still kept the same as the coherence granularity

(e.g., word granularity). If a program has a lot of write requests in a given phase, this implies that multiple

registration requests are triggered (one per word) for a given communication/address granularity. This may

result in unnecessary increase in the network traffic compared to a single registration request sent for pro-

tocols like MESI. So we added a simple optimization to delay registration requests, write combining, that
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aggregates word granularity registration requests within a communication/address granularity. We have a

bounded buffer that holds the delayed registration requests. A buffer entry is drained whenever the buffer

gets full or after some threshold time has elapsed (to avoid bursty traffic). The entire buffer is guaranteed to

be drained before the next phase begins.

2.6 Protocol Optimizations to Address Communication Inefficiencies

In this section, we extend the DeNovo protocol to add two optimizations. This extension is aimed at both

demonstrating the extensibility of the DeNovo protocol and addressing some of the communication inef-

ficiencies in today’s memory hierarchies. At a high level, the data that is being communicated can be

classified into two broad categories. Both these categories introduce different types of inefficiencies while

data is being transferred from one point to another in the memory hierarchy.

The first category is data that is actually used by the program but could avoid extra hops in the network.

For example, if the producer of the data is known in at the time of a request (e.g., an accelerator generates

the data and the CPU consumes it) we may avoid an indirection through the directory. Another example is

when we have streaming input data that is read only once we may be able to bypass some of the structures

like the last level cache because there is no reuse. The second category is data that is never used. This

happens because of fixed cache line size data transfers, overwritten data before ever being read, and so on.

The two communication optimizations we describe in this section, specifically, focus on mitigating the

inefficiencies at L1, one for each of the two categories mentioned above. We apply these optimizations when

evaluating the DeNovo coherence protocol in Section 4. We discuss several directions for future work that

aim to address network traffic inefficiencies in other parts of the memory hierarchy in Section 8.2.2.

2.6.1 Direct Transfer

The DeNovo coherence protocol described earlier suffers from the fact that even L1 misses that are even-

tually serviced by another L1 cache (cache-to-cache transfer) must go through the registry/L2 (directory in

conventional protocols), incurring an additional latency due to the indirection.

However, as observed in Section 2.2.2, touched/registered data can always be transferred for

reading without going through the registry/L2. optimization). Thus, a reader can send read requests directly

to another cache that is predicted to have the data. If the prediction is wrong, a Nack is sent (as usual) and
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Figure 2.5 Code and cache state from Figure 2.4 with direct cache-to-cache communication and flexi-
ble granularity at the beginning of phase 2.

the request reissued as a usual request to the directory. Such a request could be a demand load or it could

be a prefetch. Conversely, it could also be a producer-initiated communication or remote write [3, 80]. The

prediction could be made in several ways; e.g., through the compiler or through the hardware by keeping

track of who serviced the last set of reads to the same region. The key point is that there is no impact on

the coherence protocol – no new states, races, or message types. The requestor simply sends the request to

a different supplier. This is in sharp contrast to adding such an enhancement to MESI.

This ability essentially allows DeNovo to seamlessly integrate a message passing like interaction within

its shared-memory model. Figure 2.5 revisits the example code from Figure 2.4 and shows an interaction

between two private caches for a direct cache-to-cache transfer.

2.6.2 Flexible Transfer Granularity

Cache-line based communication transfers data from a set of contiguous addresses, which is ideal for pro-

grams with perfect spatial locality and no false sharing. However, it is common for programs to access only

a few data elements from each line, resulting in significant waste. This is particularly common in modern

object-oriented programming styles where data structures are often in the form of arrays of structs (AoS)

rather than structs of arrays (SoA). It is well-known that converting from AoS to SoA form often gives a

significant performance boost due to better spatial locality. Unfortunately, manual conversion is tedious,

error-prone, and results in code that is much harder to understand and maintain, while automatic (com-

piler) conversion is impractical except in limited cases because it requires complex whole-program analysis

and transformations [52, 71]. We exploit information about regions to reduce such communication waste,
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without changing the software’s view.

We have knowledge of which regions will be accessed in the current phase. Thus, when servicing a

remote read request, a cache could send touched or registered data only from such regions (recall

these are at field granularity within structures), potentially reducing network bandwidth and power. More

generally, the compiler may associate a default prefetch granularity attribute with each region that defines

the size of each contiguous region element, other regions in the object likely to be accessed along with

this region (along with their offset and size), and the number of such elements to transfer at a time. This

information can be kept as a table in hardware which is accessed through the region identifier and an entry

provides the above information; we call the table the communication region table. The information for the

table itself may be partly obtained directly through the programmer, deduced by the compiler, or deduced by

a runtime tool. Figure 2.5 shows an example of the use of flexible communication granularity – the caches

communicate multiple (non-contiguous) fields of region X rather than the contiguous X, Y, and Z regions

that would fall in a conventional cache line. Again, in contrast to MESI, the additional support required for

this enhancement in DeNovo does not entail any changes to the coherence protocol states or introduce new

protocol races.

This flexible communication granularity coupled with the ability to remove indirection through the reg-

istry/L2 (directory) effectively brings the system closer to the efficiency of message passing while still

retaining the advantages of a coherent global address space. It combines the benefits of various previously

proposed shared-memory techniques such as bulk data transfer, prefetching, and producer-initiated com-

munication, but in a more software-aware fashion that potentially results in a simpler and more effective

system.

2.7 Storage Overhead

We next compare the storage overhead of DeNovo to other common directory configurations.

DeNovo overhead: At the L1, DeNovo needs state bits at the word granularity. We have three states

and one touched bit (total of 3 bits). We also need region related information. In our applications, we need

at most 20 hardware regions – 5 bits. These can be replaced with 1 bit by using the optimization of the

keepValid bit discussed in Section 2.2.1. Thus, we need a total of 4 to 8 bits per 32 bits or 64 to 128 bits

per L1 cache line. At the L2, we just need one valid and one dirty bit per line (per 64 bytes) and one bit per
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word, for a total of 18 bits per 64 byte L2 cache line or 3.4%. If we assume L2 cache size of 8X that of L1,

then the L1 overhead is 1.56% to 3.12% of the L2 cache size.

In-cache full map directory. We conservatively assume 5 bits for protocol state (assuming more than 16

stable+transient states). This gives 5 bits per 64 byte cache line at the L1. With full map directories, each L2

line needs a bit per core for the sharer list. This implies that DeNovo overhead for just the L2 is better for

more than a 13 core system. If the L2 cache size is 8X that of L1, then the total L1+L2 overhead of DeNovo

is better at greater than about 21 (with keepValid) to 30 cores.

Duplicate tag directories. L1 tags can be duplicated at the L2 to reduce directory overhead. However,

this requires a very high associative lookup; e.g., 64 cores with 4 way L1 requires a 256 way associative

lookup. As discussed in [141], this design is not scalable to even low tens of cores system.

Tagless directories and sparse directories. The tagless directories work uses Bloom filter based directory

organization [141]. Their directory storage requirement appears to be about 3% to over 5% of L1 storage

for core counts ranging from 64 to 1K cores. This does not include any coherence state overhead which we

include in our calculation for DeNovo above. Further, this organization is lossy in that larger core counts

require extra invalidations and protocol complexity.

Many sparse directory organizations have been proposed that can drastically cut directory overhead at

the cost of sharer list precision, and so come at a significant performance cost especially at higher core

counts [141].

2.8 Summary

We introduced DeNovo, a software-hardware co-designed coherence protocol, that aims to address several

inefficiencies with today’s traditional directory-based protocols. DeNovo proposes to address these ineffi-

ciencies by exploiting the properties of the emerging disciplined programming models. Specifically, DeN-

ovo uses three features of these programming models: (1) structured parallel control; (2) data-race-freedom

with guarantees of deterministic execution; and (3) side effects of parallel sections.

One of the benefits of DeNovo is that it is simple and thus, makes it easy to extend the protocol for

optimizations. In this chapter we extended DeNovo by adding two optimizations to the protocol addressing

communication inefficiencies. We showed that neither of the two optimizations required addition of new

protocol states or races. We go a step further and validate the simplicity of the DeNovo protocol by formally
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verifying it and comparing this effort against that of verifying a state-of-the-art and publicly available im-

plementation of a traditional protocol (MESI). The next chapter (Chapter 3) provides more details on this

effort and its findings. In addition to evaluating the complexity of the DeNovo protocol, we also provide

performance evaluations of the protocol including the communication optimizations for several applications

in Chapter 4.
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CHAPTER 3

COMPLEXITY ANALYSIS OF THE
DENOVO PROTOCOL

One of the benefits of the DeNovo coherence protocol introduced in Chapter 2 is its simplicity. Thus DeNovo

is expected to incur a reduced verification effort compared to the traditional hardware protocols. In this

chapter, we describe our efforts to verify the DeNovo protocol (this work appears in [78]) using the Murϕ

model checking tool (version 3.1, slightly modified to exploit 64-bit machines) [54, 69, 105]. Although

more advanced verification techniques exist, we chose Murϕ for its easy-to-use interface and robustness.

Murϕ has also been the tool of choice for many hardware cache related studies [5, 34, 109, 110, 144].

This verification effort has two goals - (1) verify the correctness of the DeNovo coherence protocol; and

(2) compare our experience of verifying the DeNovo protocol with that of a state-of-the-art, mature, and

publicly available protocol and validate the simplicity of the DeNovo protocol. For the latter goal, we chose

the MESI protocol implemented in the Wisconsin GEMS simulation suite (version 2.1.1) [94]. It is diffi-

cult to define a metric to quantify the relative verification complexity of coherence protocols; nevertheless,

our results demonstrate that hardware-software co-designed approaches like DeNovo can lead to much sim-

pler protocols than conventional hardware cache coherence (while providing an easy programming model,

extensibility, and competitive or better performance).

We do not quantify the software complexity in this chapter; however, our software philosophy and DPJ

are motivated entirely by the goal of reducing software complexity. Even today, the C++ [31] and Java [93]

memory models do not provide any reasonable semantics for data races; therefore, a data race in these

programs is a bug and imposes significant verification complexity. In contrast, DPJ provides strong safety

guarantees of data-race-freedom and determinism-by-default. Programmers can reason about deterministic

programs as if they were sequential. There is certainly an additional up-front burden of writing region and
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effect annotations in DPJ; however, arguably this burden is mitigated by the lower debugging and testing

time afforded by deterministic-by-default semantics. There is also ongoing work on partly automating the

insertion of these annotations [134].

3.1 Modeling for Protocol Verification

We use the Murϕ model checking tool [54, 69, 105] to verify the simple word based protocols (equal

address, communication and coherence granularity as explained in Section 2.2.1) of DeNovo and MESI. We

derived the MESI model from the GEMS implementation [94]. We derived the DeNovo model from our

own implementation. To keep the number of states explored (by Murϕ) tractable, as is common practice, we

used a single address, single region (only for DeNovo), two data values, and two cores. We modeled private

L1 caches, a unified L2, an in-cache directory (for MESI) and an unordered full network with separate

request and reply links. Both models allow only one request per L1 in the rest of the memory hierarchy.

As we modeled only one address, we modeled replacements as unconditional events that can be triggered

at any time. To enable interactions across multiple parallel phases (cross-phase) in both the models, we

introduced the notion of a phase boundary by modeling it as a sense reversing barrier. Finally, we modeled

the data-race-free guarantee for DeNovo by limiting conflicting accesses. We explain each of these attributes

in detail below.

3.1.1 Abstract Model

To reduce the amount of time and memory used in verification, we modeled the processors, addresses, data

values, and regions as scalarsets [105], a datatype in Murϕ, which takes advantage of the symmetry in

these entitites while exploring the reachable states. A processor is modeled as an array of cache entries

consisting of L1 state information along with protocol specific fields like the region field and the touched

bit for DeNovo. L1 state is one of 3 possible states for DeNovo or one of 11 possible states for MESI.

Similarly, L2 is also modeled as an array of cache entries, each with L2 state information, dirty bit, and

other protocol specific details like sharer lists for MESI. L2 state is one of 3 possible states for DeNovo or

one of 18 possible states for MESI. Memory is modeled as an array of addresses storing data values.
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Figure 3.1 State transitions for AccessStatus data structure in a given phase. An access for which
there is no transition cannot occur and is dropped.

Data-race-free Guarantee for DeNovo

To model the data-race-free guarantee from software for DeNovo, we used an additional data structure called

AccessStatus. As shown in Figure 3.1, this data structure maintains the current status (read, readshared,

or written) and the core id of the last requestor for every address in the model. The current status and

the last requestor determine the reads and writes that cannot occur in a data-race-free program and are thus

disallowed in the model.

On any read, if it is the first access to this address in this phase, then status is set to read. If status

is already set to read and the requesting core is not the same as the last requestor, then status is set to

readshared. If status is readshared, then it stays the same on the read. If status is written and the

requesting core is the same as the last requestor it stays as written. On the other hand, if the requesting

core is not the same as the last requestor, then this access is not generated in the model since it violates the

data-race-freedom guarantee.

Similarly, on any write, if it is the first access to this address or if the requesting core is the same as the

last requestor, then status is set to write. If status is either readshared or the requesting core is not the

same as the last requestor, then this access is not generated to adhere to the data-race-free guarantee.
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The AccessStatus data structure is reset for all the addresses at the end of a phase.

Cross-phase Interactions

We modeled the end of a parallel phase (and the start of the next phase) using a sense-reversing barrier

implementation [100]. This event (end-of-phase) can be triggered at any time; i.e., with no condition. The

occurrence of end-of-phase is captured by a flag, releaseflag. This event occurs per core and stalls the

core from issuing any more memory requests until (1) all the pending requests of this core are completed;

i.e., the L1 request buffer is empty and (2) all other cores reach the barrier. The completion of end-of-

phase is indicated by resetting the releaseflag flag. Figure 3.2 shows the Murϕ code for end-of-phase

implementation for the DeNovo protocol. The spinwaiting flag indicates that the current core is waiting

for other cores to reach the barrier. When a core enters the barrier for the first time, the local sense of the

barrier (localsense) is reversed indicating entering a new barrier, barrier count (barcount) is updated, and

the spinwaiting flag is set. If it is the last one to enter the barrier, the core also notifies all other cores about

the end of barrier by assigning barrier its localsense. It also resets the barcount and releaseflag. Once

a core reaches the barrier, we also modeled self-invalidations and unsetting touched bits for DeNovo. The

code for MESI is similar except for DeNovo-specific operations like self-invalidation and unsetting touched

bits.

3.1.2 Invariants

This section discusses the invariants we checked to verify the MESI and DeNovo protocols. The MESI

invariants are based on prior work in verification of cache coherence protocols [54, 97]. The DeNovo

invariants are analogous as further described below. (Adding more invariants does not affect the verification

time appreciably because the number of system states explored is still the same.)

MESI Invariants

We used five invariants to verify the MESI protocol [54, 97].

Empty sharer list in Invalid state. This invariant asserts that the sharer list is empty when L2 transitions to

Invalid state, and ensures that there are no L1s sharing the line after L2 replaces the line.
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/* barrier implementation */

Ruleset p:Proc Do

Rule "Advance release barrier"

releaseflag[p] & L1_isRequestBufferEmpty(p)

==>

Begin

advanceRelease(p);

Endrule;

Endruleset;

!"#$%&'ϕ (')*+,&'+$-)'$./(0+/+12.13$4$5+15+6'+7+'5.13$"4''.+'

(a) Murϕ barrier rule.

Procedure advanceRelease(pid:Proc);

Begin

If !spinwaiting[pid] then

/* not spinwaiting => executing this 

barrier code for first time */

/* a sense reversing barrier */

localsense[pid]    := !localsense[pid];

/* no need for a lock here as 

Murϕ’s procedures are atomic */

barcount := barcount + 1;

If barcount = ProcCount then

barcount := 0;

barrier          := localsense[pid];

releaseflag[pid] := false;

/* self-invalidate and unset touched 

bits after release is done */

self_invalidate(pid);

unset_touched(pid);

/* the last proc to set the barcount

to 0 also unsets the AccessStatus */

unsetAccessStatus();

Else

spinwaiting[pid] := true;

Endif;

Else

If barrier = localsense[pid] then

releaseflag[pid] := false;

spinwaiting[pid] := false;

/* self-invalidate and unset 

touched bits after release is done */

self_invalidate(pid);

unset_touched(pid);

Endif;

Endif;

EndProcedure;

!"#$%&'ϕ (')*+,&'+$-)'$./(0+/+12.13$4$5+15+6'+7+'5.13$"4''.+'

(b) Murϕ procedure for implementing a sense-reversing barrier.

Figure 3.2 Murϕ code for end-of-phase implementation for DeNovo as a sense-reversing barrier. (a)
Rule that gets triggered when inside the barrier indicated by releaseflag and empty L1 request buffer
(no outstanding requests) and (b) implementation of the sense-reversing barrier including calls to end-
of-phase operations like self -invalidation instruction and unsetting of touched bits.
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Empty sharer list in Modified state. This invariant asserts that the sharer list is empty when L2 transitions

to Modified state.

Only one modifiable or exclusive cache copy. This invariant checks that there is only one cache copy in

either Modified or Exclusive state. It is also a violation for a cache line to be in both these states at the

same time.

Data value consistency at L1. When L1 is in Shared state and L2 is also in Shared state, the data values

should be the same at both L1 and L2. Indirectly, this invariant also makes sure that all the L1s have the

same data value when in Shared state.

Data value consistency at L2. This invariant checks that when L2 is in Shared state and dirty bit is not

set, L2’s data value should be the same as at memory.

DeNovo Invariants

We modeled six invariants for the DeNovo protocol. As there is no sharer list maintained in the DeNovo

protocol, we do not check for the first two invariants of the MESI protocol. The first three invariants of the

DeNovo protocol are similar to the last three invariants of the MESI protocol. The last three invariants of

the DeNovo protocol are checks on the touched bit functionality.

Only one modifiable cache copy. There cannot be two modifiable L1 cache copies in the system at the

same time. This invariant checks that there are never two L1 caches in Registered state for the same line

at the same time.

Data value consistency at L1. This invariant has two parts: (i) If L1 is in V alid state and touched bit is

set (value is read in this phase) and L2 is also in V alid state, then the data values should be the same at

both L1 and L2. (ii) If L1 is in V alid state and touched bit is set and some other L1 is in Registered

state,1 the data values should match.

Data value consistency at L2. This invariant checks that when L2 is in V alid state and dirty bit is not set,

L2’s data value should be the same as at memory.
1This is possible in DeNovo because registration at the other L1 may have happened in a previous parallel phase.
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Touched bit on a write. On a write, this invariant checks that no other cache has the touched bit set to true.

This verifies that the touched bit is implemented correctly.

Touched bit on a read. Similar to the above, on a read, this invariant checks that the only cache lines that

can have the touched bit set to true (for cores other than the requestor) are the ones in V alid state.

Unsetting touched bits. Finally, this invariant checks that all the touched bits are set to false at the end of

the phase.

3.2 Results
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Figure 3.3 MESI Bug 1 showing a race between an L1 writeback and a remote write request.

Our findings from applying Murϕ to the GEMS MESI protocol were surprising. We found six bugs

in the protocol (including two deadlock scenarios2), even though it is a mature protocol (released in 2007)

used by a large number of architecture researchers. More significantly, some of these bugs involved subtle

races and took several days to debug and fix. We contacted the developers of the GEMS simulation team

with our bug findings in 2011. They had seen one of the six bugs, but were surprised at the other bugs.
2A deadlock occurs when all the entities in the system (all L1s and L2) stop making any forward progress. Murϕ checks for

deadlock by default.
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Some of these bugs were also present in the GEM5 simulator [25], an extension to the GEMS simulator to

incorporate the M5 CPU core simulator, at that time. After we showed our fixes, the GEMS group fixed the

bugs and released new patches. These fixes needed the addition of multiple new state transitions and extra

buffer space for stalling requests in the protocol.

Despite DeNovo’s immaturity, we found only three bugs in the implementation. Furthermore, these bugs

were simple to fix and turned out to be mistakes in translating the high level description of the protocol into

the implementation (i.e., their solutions were already present in our internal high level description of the

protocol).

Each of the bugs found in MESI and DeNovo is described in detail next. In all the descriptions below, we

consider a single address. L1P1, L1P2, and L2 indicate the cache lines corresponding to the above address

in core P1, core P2, and L2 respectively. As mentioned in Section 3.1, we assume an in-cache directory at

L2 and hence we use the words directory and L2 interchangeably.

3.2.1 MESI Bugs

We first discuss the six bugs found in the MESI protocol. We list them in decreasing order of their complexity

and the amount of change to the code required to fix them. 3

Bug 1. The first bug is caused by a race between an L1 writeback and a write request by some other L1.

Figure 3.3 shows the events that lead to this bug. Let us assume that initially L1P1 is in Modified state,

L1P2 is in Invalid state, and L2 records that the cache entry is modified in L1P1. Then L1P1 issues

a replacement (event 1 in Figure 3.3) triggering a writeback (PUTX) and transitions to a transient state

waiting for an acknowledgement to this writeback request. Meanwhile, L1P2 issues a write request (event

2) triggering GETX to L2. L2 first receives GETX from L1P2 (event 3). It forwards the request to L1P1

and waits for an acknowledgement from L1P2. L1P1, on receiving the GETX request (event 4), forwards

the data to L1P2 and transitions to Invalid state. Then L1P2, on receiving the data from L1P1 (event 5)

transitions to Modified state and unblocks the directory which in turn records that the cache entry is now

modified in L1P2. But the writeback (PUTX) sent by L1P1 is still in the network and it can reach the

directory at any time as we have an unordered network (event 7), causing an error. For example, suppose

L1P1 later services a write request invalidating L1P2 and the directory is appropriately updated (not shown
3We confirmed the fixes for the MESI bugs in a personal email exchange withone of the developers of the GEMS simulation

suite.
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in the figure). L1P1’s writeback (PUTX) then reaches the directory, which is clearly an error. The bug

was found when the writeback acknowledgement from L2 reached L1P1 triggering a “missing transition”

failure (L1P1 does not expect a writeback acknowledgement in Modified state).

We solved this problem by not transitioning L1P1 to Invalid state on receiving L1P2’s GETX request.

L1P1 now sends DATA to L1P2 like before, but continues to stay in the transient state, M I. The write

request from L1P1, which triggered the bug in the previous example, is now kept pending as L1P1 is in

a transient state. We also added a transition at the L2 to send a writeback acknowledgement when the

requester is not the owner in the directory’s record. L1P1 transitions to Invalid state on receiving the

writeback acknowledgement from L2. With this, there is no longer a dangling PUTX in the network and

the problem is solved. The trace for this bug involved multiple writes to the same memory location in a

parallel phase. This scenario does not arise in DeNovo as the software guarantees data-race-freedom.

Bug 2. The second bug is similar to the first bug except that it is caused by a race between an L1 writeback

and a read request by some other L1.

The first two bugs were the most complex to understand and fix. Most of the time was spent in discov-

ering the root cause of the bugs and developing a solution in an already complex protocol. The solutions to

these bugs required adding two new cache events and eight new transitions to the protocol.

Bug 3. The third bug is caused by an unhandled protocol race between L2 and L1 replacements. To begin

with, L1P1 is in Exclusive state and L2 records that P1 is the exclusive owner. Then both L2 and L1

replace the lines simultaneously, triggering invalidation and writeback messages respectively. L1P1, on

receiving the invalidation message, transitions to Invalid state and sends its data to L2. On receiving this

data, L2 completes the rest of the steps for the replacement. In the end, both L1 and L2 have transitioned

to Invalid states, but the initial writeback message from L1 is still in the network and this is incorrect. The

bug was found when the writeback acknowledgement (issued by L2 on receiving the dangling writeback

message) reaches L1P1 when it is not expecting one and hence triggers a “missing transition” error.

This bug can be fixed by not sending the data when L1 receives an invalidation message and by treating

the invalidation message itself as the acknowledgement for L1’s earlier writeback message. Also, the L1

writeback message is treated as the data response for the invalidation message at L2. The fix required adding

four new transitions to the protocol.

Bug 4. The fourth bug results in a deadlock situation. It is caused by an incorrectly handled protocol race
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between an Exclusive unblock (response sent to unblock L2 on receiving an exclusive access) and an L1

writeback issued by the same L1 (issued after sending Exclusive unblock). Initially, L2 is waiting for

an Exclusive unblock in a transient state transitioned from Invalid state. In this transient state, when

L2 receives an L1 writeback, it checks whether this writeback came from the current owner or not. The

owner information is updated at L2 on receiving the Exclusive unblock message. Here, L1 writeback

(racing with Exclusive unblock from the same L1) reached L2 first and L2 incorrectly discarded the L1

writeback as the owner information at L2 did not match the sender of the L1 writeback. This incorrect

discarding of the L1 writeback results in a deadlock.

This bug can be fixed by holding the L1 writeback to be serviced until Exclusive unblock is received

by L2. This requires adding a new transition and additional buffering to hold the stalled request to the

protocol.

Bug 5. The fifth bug is similar to the fourth (race between Exclusive unblock and L1 writeback), but in-

stead L2 is initially in Shared state. The fix for this bug required adding two new transitions and additional

buffering to hold the stalled requests to the protocol.

Bug 6. The last bug results in a deadlock scenario due to an incorrect transition by L2 on a clean re-

placement. It transitions to a transient state awaiting an acknowledgement from memory even though the

transition did not trigger any writeback. The fix was simple and required transitioning to Invalid state

instead.

3.2.2 DeNovo Bugs

We next discuss the three bugs found in the DeNovo protocol. The first bug is a performance bug and the

last two are correctness bugs, both of which are caused by races related to writebacks.

Bug 1. The first of the three bugs found was caused by not unsetting the dirty bit on replacement of a dirty L2

cache line. Assume that L2 is initially in V alid state and the dirty bit is set to true. Then on L2 replacement,

it transitions to Invalid state and writes back data to memory. But the dirty bit is mistakenly not unset.

This bug was found when Murϕ tried to replace the line in Invalid state as the dirty bit was set to true (the

model triggers a replacement event by only checking the dirty bit). The model, legitimately, did not have an

action specified for a replacement event in the Invalid state, thus resulting in a “missing transition” error.

However, the actual implementation did have an action (incorrectly) that triggered unnecessary writebacks
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Figure 3.4 DeNovo Bug 3 showing a race between replacements at both the L1s and the L2. This figure
doesn’t show the request buffer entries for L2 and for writeback entries at L1.

to memory which should be silent replacements instead. This turned out to be a rare case to hit in the

simulation runs.

Bug 2. This occurs because an L2 initiated writeback and future requests to the same cache line are not

serialized. Initially, L1P1 is in Registered state and L2 knows P1 as the registrant. On replacing the line,

L2 sends a writeback request to L1. L1 replies to this writeback request by sending the data to L2 and

transitions to V alid state.4 Then on receiving the writeback from L1, L2 sends an acknowledgement to L1

and in parallel sends a writeback to memory and waits for an acknowledgement. Meanwhile, let us assume

that L1 issued a registration request (on receiving a store request) and successfully registers itself with L2.

At this point, yet another L2 replacement was triggered, finally leading to multiple writebacks to memory

in flight. This is incorrect because the writebacks can be serviced out of order. Murϕ found this bug when

an assertion failed inside the implementation of L2’s request buffer.

The real source of this bug is allowing L1 registration to be serviced at L2 while a writeback to memory

is pending. The fix involves serializing requests to the same location at L2 – in this case, the L1 registration
4In DeNovo, the L2 cache is inclusive of only the registered lines in any L1. Hence it is possible for L1 to transition from

Registered to V alid on receiving a writeback request from L2.
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request behind the writeback to memory. This was already present in our high level specification, but was

missed in the actual protocol implementation. It did not involve adding any new states or transitions to the

protocol.

Bug 3. The last bug is due to a protocol race where both the L1s and the L2 replace the line. This bug

involves both cores and cross-phase interactions. The events that lead to the bug are shown in Figure 3.4.

At the beginning of the phase, let us assume that L1P1 is in Invalid state and L1P2 is in Registered state

(from the previous phase). L1P2 replaces the line (event 1 in Figure 3.4) and issues a writeback (PUTX) to

L2. While this writeback is in flight, L1P1 successfully registers itself with L2 (events 2-4) (L2 redirects

the request to L1P2 as it is the current registrant). This is followed by a replacement by L1P1 (event 5),

thus triggering another writeback (PUTX) to L2. L2 first receives the writeback from L1P1 (event 6) and

responds by sending an acknowledgement and transitioning to V alid state while setting the dirty bit to true.

Now, L2 also replaces the line (event 7) transitioning to Invalid state and issues a writeback to memory. But

the writeback from L1P2 is still in flight. This writeback now reaches L2 (event 8) while in Invalid state

(because we model an unordered network). The implementation did not handle this case, and resulted in a

“missing transition” failure. This bug can be easily fixed by adding a transition to send an acknowledgement

to L1P2’s writeback, without the need for triggering any actions at L2.

3.2.3 Analysis

The bugs described above for both MESI and DeNovo show that cache line replacements and writebacks,

when interacting with other cache events, cause subtle races and add to the complexity of cache coherence

protocols. Fixes to bugs in the MESI protocol needed adding new events and several new transitions. On

the other hand, fixing bugs in the DeNovo protocol was relatively easy since it lacks transient states even for

races related to writebacks.

3.2.4 Verification Time

After fixing all the bugs, we ran the models for both MESI and DeNovo on Murϕ as described in Section

3.1. The model for MESI explores 1,257,500 states in 173 seconds whereas the model for DeNovo explores

85,012 states in 8.66 seconds. These are the number of distinct system states exhaustively explored by the

model checking tool. The state space and runtime both grow significantly when we increase the parameters
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in the verification model. For example, when we modeled two addresses, we were able to finish running

DeNovo without any bugs being reported but we ran out of system memory (32 GB) for MESI. This indicates

(1) the simplicity and reduced verification overhead for DeNovo compared to MESI, and (2) the need for

more scalable tools amenable to non-experts to deal with more conventional hardware coherence protocols

in a more comprehensive way.

3.3 Summary

We described our efforts to verify the DeNovo protocol introduced in Chapter 2. We provided details of our

system modeled using the Murϕ model checking tool. To evaluate the simplicity of the DeNovo protocol we

compare our verification efforts with that of a publicly available, state-of-the-art implementation of the MESI

protocol. Surprisingly, we found that after four years of extensive use in the architecture community, the

MESI protocol implementation still had several bugs. These bugs were hard to diagnose and fix, requiring

new state transitions. In contrast, verifying a far less mature, hardware-software co-designed protocol,

DeNovo, revealed fewer bugs that were much easier to fix. After the bug fixes, we found that MESI explored

15X more states and took 20X longer to model check compared to DeNovo. Although it is difficult to define

a single metric to quantify the relative complexity of protocols or to generalize from two design points,

our results indicate that the DeNovo protocol which is hardware-software co-designed provides a simpler

alternative to traditional hardware protocols.
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CHAPTER 4

PERFORMANCE EVALUATION OF THE
DENOVO PROTOCOL

In this chapter we evaluate the DeNovo coherence protocol that addresses several inefficiencies in today’s

directory-based coherence protocols. We also evaluate the performance and energy implications of the two

protocol optimizations that are applied to DeNovo to address some of the communication inefficiencies.

4.1 Simulation Environment

Our simulation environment consists of the Simics full-system functional simulator that drives the Wisconsin

GEMS memory timing simulator [94] which implements the simulated protocols. We also use the Princeton

Garnet [8] interconnection network simulator to accurately model network traffic. We chose not to employ

a detailed core timing model due to an already excessive simulation time. Instead, we assume a simple,

single-issue, in-order core with blocking loads and 1 CPI for all non-memory instructions. We also assume

1 CPI for all instructions executed in the OS and in synchronization constructs.

We used the implementation of MESI that was shipped with GEMS [94] for our comparisons. The

original implementation did not support non-blocking stores. Since stores are non-blocking in DeNovo, we

modified the MESI implementation to support non-blocking stores for a fair comparison. Our tests show that

MESI with non-blocking stores outperforms the original MESI by 28% to 50% (for different applications).

Table 4.1 summarizes the key common parameters of our simulated systems. Each core has a 128KB

private L1 Dcache (we do not model an Icache). L2 cache is shared and banked (512KB per core). The

latencies in Table 4.1 are chosen to be similar to those of Nehalem [62], and then adjusted to take some

properties of the simulated processor (in-order core, two-level cache) into account.
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Processor Parameters
Frequency 2GHz
Number of cores 64
Memory Hierarchy Parameters
L1 (Data cache) 128KB
L2 (16 banks, NUCA) 32MB
Memory 4GB, 4 on-chip controllers
L1 hit latency 1 cycle
L2 hit latency 29 ∼ 61 cycles
Remote L1 hit latency 35 ∼ 83 cycles
Memory latency 197 ∼ 261 cycles

Table 4.1 Parameters of the simulated processor.

4.2 Simulated Protocols

We compared the following 9 systems:

MESI word (MW) and line (ML): MESI with single-word (4 byte) and 64-byte cache lines, respectively.

DeNovo word (DW) and line (DL): DeNovo with single-word (Section 2) and 64-byte cache lines, respec-

tively.

We charge network bandwidth for only the valid part of the cache line plus the valid-word bit vector.

DL with write-combining (DLC): Line-based DeNovo with the write-combining optimization described

in 2.5. We have a bounded buffer of 256 entries per L1.

DLC with direct cache-to-cache transfer (DLCD): DLC with direct cache-to-cache transfer. We use

oracular knowledge to determine the cache that has the data. This provides an upper-bound on achievable

performance improvement.

DLC with flexible communication granularity (DLCF): DLC with flexible communication granularity.

Here, on a demand load, the communication region table is indexed by the region of the demand load to

obtain the set of addresses that are associated with that load, referred to as the communication space. We

fix the maximum data communicated to be 64 bytes for DF. If the communication space is smaller than

64 bytes, then we choose the rest of the words from the 64-byte cache line containing the demand load

address. We optimistically do not charge any additional cycles for determining the communication space

and gathering/scattering that data.

DLC and DW with both direct cache-to-cache transfer and flexible communication granularity

(DLCDF and DWDF respectively): Line-based (with write-combining) and word-based DeNovo with the

43



above two optimizations, direct cache-to-cache transfer and flexible communication granularity, combined

in the obvious way.

We do not show word based DeNovo augmented with just direct cache-to-cache transfer or just flexible

communication granularity because the results were as expected and did not lend new insights, and the DeN-

ovo word based implementations have too much tag overhead compared to the line based implementations.

4.3 Conveying Regions and Communication Space

4.3.1 Regions for Self-invalidation

In a real system, the compiler would convey the region of a data through memory instructions (Chapter 2).

For this study, we created an API to manually instrument the program to convey this information for every

allocated object. This information is maintained in a table in the simulator. At every load or store, the table

is queried to find the region for that address (which is then stored with the data in the L1 cache).

4.3.2 Self-invalidation

This API call specifies a region and triggers invalidations for the data in the cache associated with this given

region that is not touched or registered.

4.3.3 Conveying Communication Space

To convey communication granularity information, we use a special API call that controls the communica-

tion region table of the simulator. On a demand load, the table is accessed to determine the communication

space of the requested word. In an AoS program, this set can be simply defined by specifying 1) what object

fields, and 2) how many objects to include in the set. For our benchmarks, we manually insert these API

calls.

4.3.4 Hardware Overheads

For the applications studied in this paper (see below), the total number of regions ranged from 2 to about 20.

These could be coalesced by the compiler, but we did not explore that here. So for these applications, the

maximum number of registers needed in the hardware to store the region IDs is 20. Each of these registers

44



need to be at least 5 bit wide to be able to point to any of these 20 regions. The storage overhead at the L1

and the L2 is described in Section 2.7. In our simulations, we do not use the keepValid bit. Instead, we

explicitly store the region IDs per word. Finally, the communication region table needs to be as big as the

maximum number of regions (20 entries for our applications). Each entry in this table stores the prefetch

information provided by the compiler for the particular region.

4.4 Workloads

We use seven benchmarks to evaluate the effectiveness of DeNovo features for a range of dense-array,

array-of-struct, and irregular pointer-based applications. FFT (with input size m=16), LU (with 512x512

array and 16-byte blocks), Radix (with 4M integers and 1024 radix), and Barnes-Hut (16K particles) are

from the SPLASH-2 benchmark suite [139]. kdTree [44] is a program for construction of k-D trees which

are well studied acceleration data structures for ray tracing in the increasingly important area of graphics

and visualization. We run it with the well known bunny input. We use two versions of kdTree: kdTree-false

which has false sharing in an auxiliary data structure and kdTree-padded which uses padding to eliminate

this false sharing. We use these two versions to analyze the effect of application-level false sharing on the

DeNovo protocols. We also use fluidanimate (with simmedium input) and bodytrack (with simsmall input)

from the PARSEC benchmark suite [23]. To fit into the fork-join programming model, fluidanimate was

modified to use the ghost cell pattern instead of mutexes, and radix was modified to perform a parallel prefix

with barriers instead of condition variables. For bodytrack, we use its pthread version unmodified.

For all the applications above, we manually inserted the API calls for specifying regions, self-invalidations,

and conveying communication spaces. These API calls are intercepted by Simics and triggered necessary

actions in the simulator. The applications we used are written in C++ and we used g++ (version 4.5.2) to

generate the binaries.

4.5 Results

Effectiveness of regions and touched bits: To evaluate the effectiveness of regions and touched bits, we ran

DL without them. This resulted in all the valid words in the cache being invalidated by the self-invalidation

instruction. Our results show 0% to 25% degradation for different applications, which indicates that these
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Figure 4.1 Comparison of MESI vs. DeNovo protocols without the communication optimizations. All
bars are normalized to the corresponding ML protocol.
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techniques are beneficial for some applications.

We divide the remainder of this section into two parts. In Section 4.5.1, we compare the performance of

MESI and DeNovo without the communication optimizations. We also evaluate the effect of cache lines in

these two protocols. In Section 4.5.2, we analyze the performance of the two communication optimizations.

4.5.1 Evaluation of Word and Line Protocols

Figures 4.1a, 4.1b, and 4.1c respectively show the memory stall time, network traffic, and the overall

execution time for all the word and line protocols described in Section 4.2 for each application. Each bar

(protocol) is normalized to the corresponding (state-of-the-art) MESI-line (ML) bar.

The memory stall time bars (Figure 4.1a) are divided into four components. The bottommost indicates

time spent by a memory instruction stalled due to a blocked L1 cache related resource (e.g., the 64 entry

buffer for non-blocking stores is full). The upper three indicate additional time spent stalled on an L1

miss that gets resolved at the L2, a remote L1 cache, or main memory respectively. The network traffic

bars (Figure 4.1b) show the number of flit crossings through on-chip network routers due to reads, writes,

writebacks, and invalidations respectively. The execution time bars (Figure 4.1c) are divided into time

spent in compute cycles, memory stalls, and synchronization cycles respectively. We primarily focus on the

memory stall time and the network traffic results because the overall execution time results follow a similar

trend as the memory stall time results.

MESI vs. DeNovo word protocols (MW vs. DW): MW and DW are not practical protocols because of

their excessive tag overhead. A comparison is instructive, however, to understand the efficacy of selective

self-invalidation, independent of line-based effects such as false sharing. In all cases, DW’s performance

is competitive with MW. For the cases where it is slightly worse (e.g., Barnes), the cause is higher remote

L1 hits in DW than in MW. This is because in MW, the first reader forces the last writer to writeback to

L2. Thus, subsequent readers get their data from L2 for MW but need to go to the remote L1 (via L2) for

DW, slightly increasing the memory stall time for DW. However, in terms of network traffic, DW always

significantly outperforms MW.

MESI vs. DeNovo line protocols (ML vs. DL): DL shows about the same or better memory stall times

as ML. For LU and kdTree-false, DL shows 55.5% and 73.6% reduction in memory stall time over ML,

respectively. Here, DL enjoys one major advantage over ML: DL incurs no false sharing due to its per-word
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coherence state. Both LU and kdTree-false contain some false sharing, as indicated by the significantly

higher remote L1 hit component in the memory stall time graphs for ML. In terms of network traffic, DL

outperforms ML except for fluidanimate and radix. Here, DL incurs more network traffic because registra-

tion (write-traffic) is still at word-granularity (shown in 4.1b).

Effectiveness of write-combining optimization (DL vs. DLC): The additional registration traffic in

DL can be mitigated with a “write-combining” optimization that aggregates individual registration requests

at a cache-line granularity as described in Section 2.5. Compared to DL, DLC has minimal reduction in

the memory stall time, but has significant impact on the store traffic. Specifically, the traffic anomaly for

fluidanimate and radix in DL is completely eliminated and DLC outperforms ML for every application in

network traffic.

Effectiveness of cache lines for MESI: Comparing MW and ML, we see that the memory stall time

reduction resulting from transferring a contiguous cache line instead of just a word is highly application

dependent. The reduction is largest for radix (a large 93%), which has dense arrays and no false sharing.

Most interestingly, for kdTree-false (object-oriented AoS style with false sharing), the word based MESI

does better than the line based MESI by 35%. This is due to the combination of false sharing and less

than perfect spatial locality. Bodytrack is similar in that it exhibits little spatial locality due to its irregular

access pattern. Consequently, ML shows higher miss counts and memory stall times than MW (due to cache

pollution from the useless words in a cache line).

Effectiveness of cache lines for DeNovo: Comparing DW with DL, we see again the strong application

dependence of the effectiveness of cache lines. However, because false sharing is not an issue with DeNovo,

both LU and kdTree-false enjoy larger benefits from cache lines than in the case of MESI (77% and 62%

reduction in memory stalls). Analogous to MESI, Bodytrack sees larger memory stalls with DL than with

DW because of little spatial locality.

4.5.2 Evaluation of the Communication Optimizations

Figures 4.2a, 4.2b, and 4.2c respectively show the memory stall time, network traffic, and the overall

execution time for all the protocols with either or both of the communication optimizations. We also show

a bar for DLC as these optimizations are applied on top of it. The bars in these figures are also normalized

to the corresponding MESI-line (ML) bar to appreciate how much overall benefit we get compared to the
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Figure 4.2 Performance evaluation of the communication optimizations. All bars are normalized to
the corresponding ML protocol.
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baseline ML protocol.

Effectiveness of direct cache-to-cache transfer with DLC: FFT and barnes exhibit much opportunity

for direct cache-to-cache transfer. For these applications, DLCD is able to significantly reduce the remote

L1 hit latencies when compared to DLC.

Effectiveness of flexible communication granularity with DLC: DLCF performs about as well or

better than ML and DLC for all cases, except for Bodytrack. Bodytrack does not do as well because of

the line granularity for cache allocation (addresses). DLCF can bring in data from multiple cache lines;

although this data is likely to be useful, it can potentially replace a lot of allocated data. As we see later,

flexible communication at word address granularity does much better for Bodytrack. Overall, DLCF shows

up to 77% reduction in memory stall time over ML and up to 43% over DLC.

Effectiveness of combined optimizations with DLC: DLCDF combines the benefits of both DLCD

and DLCF to show either about the same or better performance than all the other line based protocols.

Effectiveness of combined optimizations with DW: For applications like Bodytrack with low spatial

locality, word-based protocols have the advantage over line based protocols by not bringing in potentially

useless data and/or not replacing potentially useless data. We find that DW with our two optimizations

(DWDF) does indeed perform better than DLCDF for this application. In fact, DDFW does better for 5 out

of the 8 applications.

4.6 Summary

We provide performance analysis of the DeNovo protocol and its two optimizations that address inefficien-

cies related to coherence and communication. We ran our simulations on a 64-core system and compared

the performance against the MESI protocol using seven benchmarks. We show that DeNovo including the

two communication optimizations reduces the memory stall time by 32% on average. It also reduces the

overall network traffic by 36% which results in direct savings in energy. These reductions in the memory

stall time and the network traffic result in an overall reduction in execution time by 17% on average. Hence

we show that by exploiting the features of a disciplined parallel programming model we not only simplify

the coherence protocol but also provide better performance and energy compared to traditional hardware

protocols.
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CHAPTER 5

DATA STORAGE

In this chapter we focus on inefficiencies related to data storage. Scratchpads and hardware-managed caches

are two widely used memory organizations in today’s memory hierarchies especially in heterogeneous SoC

systems. Caches are easy to program because they are largely transparent to the programmer. However,

every cache access results in a TLB access and tag comparisons making it a power-inefficient organizational

structure. Additionally, in modern object-oriented programming styles, where objects are generally com-

posed of multiple fields, it is common for only a few of the object’s fields to be accessed together. This

problem in the context of network traffic wastage has been addressed by one of our proposed communi-

cation optimizations, flexible transfer granularity, in Chapter 2. As caches store data at fixed cache line

granularities, the unused fields of the objects waste valuable cache space too.

Software-managed directly addressable scratchpad memories are commonly used in SoC designs be-

cause they are more energy and delay efficient compared to caches and are not susceptible to pathological

performance anomalies due to conflict misses (especially for realtime systems) [14, 132, 133]. Scratchpads

offer significant area and energy savings (e.g. 34% area and 40% power [16] or more [87]) because they

do not require tag lookups or have misses like traditional caches: once the data is inserted into the scratch-

pad, it remains there until explicitly removed. This requires explicit addressing and programmer support,

which can be useful because programmers often understand their data usage and layout, allowing them to

compactly store only the necessary data.

However, scratchpads suffer from multiple inefficiencies. Since they comprise a disjoint address space

from global memory, they use additional instructions to explicitly move data between the scratchpad and

global memory. These instructions typically use the core’s pipeline resources, use registers to bring data in

and out of the scratchpad from/to the main memory, and pollute the cache. Data in the scratchpad is also
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visible only to the core it belongs to. As a result, the data in the scratchpad requires explicit, eager writebacks

to the main memory to make the data globally visible. These explicit data movements and utilization of core

resources result in unnecessary energy wastage and performance penalty.

To address the inefficiencies of caches and scratchpads we introduce a new memory organization called

stash, which combines the best properties of the cache and scratchpad organizations. Similar to a scratchpad,

the stash is software managed and directly addressable. However, the stash also has a mapping between

the global and local stash address spaces. This mapping is provided by the software and is used by the

hardware whenever a translation between the two address spaces is required (e.g., miss, writeback, and

remote requests). The mapping allows the stash to avoid the explicit data movement of the scratchpad and

instead implicitly move data between address spaces. Furthermore, like a scratchpad the stash can compactly

map non-contiguous global memory elements and obtain the benefits of AoS to SoA transformation without

any software changes or actual data transformations in memory. Similar to a cache, the stash values are

globally visible. Global visibility requires extensions to the coherence protocol. The functionality of the

stash organization is not dependent on a particular coherence protocol. Different coherence protocols can

be extended with different tradeoffs to support stash. In Section 5.4.4, we describe these tradeoffs for MESI

and DeNovo. In our implementation we chose DeNovo for coherence support for its simplicity and low

overhead.

There has been a significant amount of prior work on optimizing the behavior of private memories.

This includes methods for transferring data from the memory to the scratchpad directly without polluting

registers or caches [10, 19, 70], changing the data layout for increased compaction [36, 42], removing tag

checks for caches [120, 145], and virtualizing private memories [48, 49, 50, 91]. While each of these

techniques mitigates some of the inefficiencies of scratchpads or caches, none of these techniques mitigates

all of the inefficiencies. While a quantitative comparison with all of the techniques is outside the scope of

this thesis, we provide a detailed qualitative comparison for all (Section 7.3.1) and quantitatively compare

our results to the closest technique to our work: scratchpad enhanced with a DMA engine.
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Feature Benefit Cache Scratchpad Stash

Directly addressed
No address translation hardware access 7 3 3

(if physically tagged) (on hits)
No tag access 7 3 3

No conflict misses 7 3 3

Compact storage Efficient use of SRAM storage 7 3 3

Global addressing
Implicit data movement from/to structure

3 7 3No pollution of other memories
On-demand loads into structures

Global visibility
Lazy writebacks

3 7 3
Reuse across kernels and phases

Table 5.1 Comparison of cache, scratchpad, and stash.

5.1 Background

5.1.1 Caches

Caches are a common memory organization in modern systems. Their transparency to software makes them

easy to program, but incurs some inefficiencies.

Indirect, hardware-managed addressing: Cache loads and stores specify addresses that hardware must

translate to determine the physical location of the accessed data. This indirect addressing implies that each

cache access (a hit or a miss) incurs (energy) overhead for TLB lookups and tag comparisons. Virtually

tagged caches do not require TLB lookups on hits, but they incur additional overhead, including dealing

with synonyms, page mapping and protection changes, and cache coherence [17]. Further, the indirect,

hardware-managed addressing also results in unpredictable hit rates due to cache conflicts, causing patho-

logical performance (and energy) anomalies, a particularly notorious problem for real-time systems.

Inefficient, cache line based storage: Caches store data at fixed cache line granularities which wastes

SRAM space when a program does not access the entire cache line (e.g., when a program phase traverses

an array of large objects but accesses only one field in each object).

5.1.2 Scratchpads

Scratchpads are local memories that are managed in software, either by the programmer or through com-

piler support. Unlike caches, scratchpads are directly addressed, without the energy overheads of TLB

lookups and tag comparisons. Direct, software-managed addressing also eliminates the pathologies of con-

flict misses, providing a predictable (100%) hit rate. Finally, scratchpads allow for a compact storage layout

as the software only brings useful data into the scratchpad. Scratchpads, however, suffer from other ineffi-
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ciencies.

Not Globally Addressable: Scratchpads have a separate address space disjoint from the global address

space, with no mapping between the two. To exploit the benefits of the scratchpad for globally addressed

data, extra instructions must be used to explicitly move such data between the two spaces, incurring perfor-

mance and energy overhead. Furthermore, in current systems the additional loads and stores typically move

data via the core’s L1 cache and its registers, polluting these resources and potentially evicting (spilling)

useful data. Scratchpads also do not perform well for applications with on-demand loads because today’s

scratchpads usually pre-load all elements before they are accessed. In applications with control/data depen-

dent accesses, only a few of those pre-loaded elements will be accessed.

Not Globally Visible: A scratchpad is visible only to its local core. Therefore dirty data must be explicitly

written back to a global address (and flushed) before it is needed by other cores in subsequent kernels. 1

In current GPUs, such writebacks typically occur before the end of the kernel (when the scratchpad space

is deallocated), even if the same data may be reused in a later phase of the program. (GPU codes assume

data-race-freedom; i.e., global data moved to/from the scratchpad is not concurrently written/read in the

same kernel.) Thus, the lack of global visibility results in potentially unnecessary, eager writebacks and

precludes reuse of data across multiple kernels.

Table 5.1 compares caches and scratchpads (Section 5.2 discusses the stash column).

Example and usage modes: Figure 5.1a shows an example to demonstrate the above inefficiencies. The

code at the top reads one field, fieldX (of potentially many), from an array of structs (AoS) data structure,

aosA, performs some computation using this field, and writes back the result to aosA. The bottom of the

figure shows some of the corresponding steps in hardware. First, the program must explicitly load a copy

of the data into the scratchpad from the corresponding global address (event 1; additionally events 2 and

3 on an L1 miss). This explicit load will bring the data into the L1 cache (hence polluting it as a result).

Next, the data must be brought from the L1 cache into a local register in the core (event 4) so the value can

be explicitly stored into the corresponding scratchpad address. At this point, the scratchpad is populated

with the global value and the program can finally use the data in the scratchpad (events 6 and 7). Once the

program is done modifying the data, the dirty scratchpad data is explicitly written back to the global address

space, requiring loads from the scratchpad and stores into the cache (not shown in the figure).
1A kernel is the granularity at which the CPU invokes the GPU and it executes to completion on the GPU.
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func_scratch(struct* aosA, int myOffset, int myLen)
{

__scratch__ int local[myLen];   
// explicit global load and scratchpad store
parallel for(int i = 0; i < myLen; i++) {

local[i] = aosA[myOffset + i].fieldX;
}
// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);
}
// explicit scratchpad load and global store
parallel for(int i = 0; i < myLen; i++) {

aosA[myOffset + i].fieldX = local[i];
}

}

func_stash(struct* aosA, int myOffset, int myLen)
{

__stash__ int local[myLen];
//AddMap(stashBase, globalBase, fieldSize, 

objectSize, rowSize, strideSize, 
numStrides, isCoherent)

AddMap(local[0], aosA[myOffset], sizeof(int), 
sizeof(struct), myLen, 0, 1, false);

// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);

}
}

func_scratch(struct* aosA, int myOffset, int myLen)
{

__scratch__ int local[myLen];   
// explicit global load and scratchpad store
parallel for(int i = 0; i < myLen; i++) {

local[i] = aosA[myOffset + i].fieldX;
}
// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);
}
// explicit scratchpad load and global store
parallel for(int i = 0; i < myLen; i++) {

aosA[myOffset + i].fieldX = local[i];
}

}

func_stash(struct* aosA, int myOffset, int myLen)
{

__stash__ int local[myLen];
//AddMap(stashBase, globalBase, fieldSize, 

objectSize, rowSize, strideSize, 
numStrides, isCoherent)

AddMap(local[0], aosA[myOffset], sizeof(int), 
sizeof(struct), myLen, 0, 1, true);

// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);

}
}
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Figure 5.1 Codes and hardware events for (a) scratchpad and (b) stash. Scratchpads require instruc-
tions for explicit data movement to/from the global space. Stash uses AddMap to provide a mapping
to the global space, enabling implicit movement.

We call the above usage mode where data is moved explicitly from/to the global space as global-

unmapped mode. Scratchpads can also be used for private, temporary values. Such values do not require

global address loads or writebacks as they are discarded after their use (they trigger only events 6 and 7 in

the figure). We call this mode as temporary mode.

5.2 Stash Overview

A stash is a new SRAM organization that combines the advantages of scratchpads and caches. Table 5.1

summarizes the benefits of the stash, showing that it combines the best of both caches and scratchpads. It

has the following features.

Directly addressable: Like scratchpads, a stash is directly addressable and data in the stash is explicitly

allocated by software (either the programmer or the compiler).
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Compact storage: Since it is software managed, only data that software deems useful is brought into the

stash. Thus, like scratchpads, stash enjoys the benefit of a compact storage layout, and unlike caches, it is

not susceptible to storing useless words of a cache line.

Physical to global address mapping: In addition to being able to generate a direct, physical stash address,

software can also specify a mapping from a contiguous set of stash addresses to a (possibly non-contiguous)

set of global addresses. Our architecture can map to a 1D or 2D, possibly strided, tile of global addresses.2

Hardware maintains the mapping from the stash to global space until the data is present in the stash.3

Global visibility: Like a cache, stash data is globally visible through a coherence mechanism (described

in Section 5.4.4). A stash, therefore, does not need to eagerly writeback dirty data. Instead, data can

be reused and lazily written back only when software actually needs the stash space to allocate new data

(similar to cache replacements). If another core needs that data, it will be forwarded to the stash through the

coherence mechanism. In contrast, for scratchpads in current GPUs, data is written back to global memory

(and flushed) at the end of a kernel, resulting in potentially unnecessary and bursty writebacks with no reuse

across kernels.

The first time a load occurs to a newly mapped stash address, it implicitly moves the data from the

mapped global space to the stash and returns it to the core (analogous to a cache miss). Subsequent loads

for that address immediately return the data from the stash (analogous to a cache hit, but with the energy

benefits of direct addressing). Similarly, no explicit stores are needed to write back the stash data to its

mapped global location. Thus, the stash enjoys all the benefits of direct addressing of a scratchpad on its

hits (which occur on all but the first access), but without the overhead incurred by the additional loads and

stores required for explicit data movement in the scratchpad.

Figure 5.1b shows the code from Figure 5.1a modified for a stash. The stash code does not have any

explicit instructions for moving data into or out of the stash from/to the global address space. Instead, the

stash has an AddMap call that specifies the mapping between the two address spaces (further discussed in

Section 5.3). In hardware (bottom part of the figure), the first load to a stash location (event 1) implicitly

triggers a global load (event 2) if the data is not already present in the stash. Once the load has returned the

desired data (event 3), it is sent to the core (event 4). Subsequent accesses will directly return the data from

the stash without consulting the global mapping.
2Our design can be easily extended to other access patterns with additional parameters and is not fundamentally restricted.
3This is the reverse of today’s virtual to physical translation.
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Figure 5.2 Mapping a global 2D AoS tile to a 1D stash address space

5.3 Stash Software Interface

We envision the programmer or the compiler will map a part of the global address space to the stash.

Programmers writing applications for today’s GPU scratchpads already effectively compute such a mapping.

There has also been prior work on compiler methods to automatically deduce this information [14, 77, 104].

The mapping of the global address space to stash requires strictly less work compared to that of a scratchpad

as it avoids the need for explicit loads and stores between the global and stash address spaces. Reducing the

programmer overhead or compiler analysis to automatically generate this mapping is outside the scope of

this paper. Instead, we focus on the hardware-software interface for stash and we use GPU applications that

already contain scratchpad related annotations in our experiments (Section 6).
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5.3.1 Specifying Stash-to-Global Mapping

The mapping between global and stash address spaces is specified using two intrinsic functions. The first

intrinsic, AddMap, is called when communicating a new mapping to the hardware. We need an AddMap

call for every data structure (a linear array or a 2D tile of an AoS structure) that is mapped to the stash per

thread block.

Figure 5.1b shows an example usage of AddMap along with its definition. To better understand the

parameters of AddMap we show how an example 2D global address space is mapped to a 1D stash address

space in Figure 5.2. First, the global address space is divided into multiple tiles as shown in Figure 5.2a.

Each of these tiles has a virtual address base that is mapped to a corresponding stash address base at runtime.

The first two parameters of AddMap specify stash and global virtual base addresses of a given tile. The

stash base address in the AddMap call is local to the thread block. This local stash base address is mapped

to the actual physical address at runtime. This mapping is similar to how today’s scratchpads are scheduled.

Figure 5.2a also shows the various parameters used to describe the object and the tile. The field size and

the object size provide information about the global data structure (field size = object size for scalar arrays).

The next three parameters specify information about the tile in the global address space: the row size of the

tile, global stride between the two rows of the tile, and the number of strides. Finally, Figure 5.2b shows

the 1D mapping of the individual fields of interest from the 2D global AoS data structure. The last field of

AddMap, isCoherent, indicates the operation mode of the stash, discussed in Section 5.4.4.

The second intrinsic, ChgMap, is used whenever there is a change in mapping or the operation mode

of the chunk of global addresses that are mapped to the stash. The parameters for the ChgMap call are the

same as for the AddMap call.

5.3.2 Stash Load and Store Instructions

The load and store instructions for a stash access are similar to those for a scratchpad. On a hit, the stash

needs to just know the requested address. On a miss, in addition to the requested address, the stash needs to

know which stash-to-global mapping (an index in a hardware table, discussed later) it needs to apply. This

information can be encoded in the instruction in at least two different ways without requiring extensions to

current ISA. CUDA, for example, has multiple address modes for LD/ST instructions - register, register-

plus-offset, and immediate addressing. The register based addressing schemes hold the stash (or scratchpad)
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address in the register field. We can use the higher bits of register for storing the map index (since a

stash address does not need all the bits of the register). Alternatively, we can use the register-plus-offset

addressing scheme, where register holds the stash address and offset holds the map index (in CUDA,

offset is currently ignored when the local memory is configured as a scratchpad). Section 5.4 discusses

more details regarding the hardware map index and how it is used.

5.3.3 Usage Modes

A single mapping for the stash data usually holds the translation for a large, program-defined chunk of data;

each such chunk can be used in four different modes:

Mapped Coherent: This mode is based on the description so far – it provides a stash-to-global mapping

and the stash data is globally visible and coherent.

Mapped Non-coherent: This mode is similar to that of “Mapped Coherent” except that the stash data is

not coherent. The stash can still avoid having explicit instructions to move the data from the global address

space to the stash, but any modifications to local stash data are not reflected to the global address space.

Global-unmapped and Temporary: These two modes are similar to that of scratchpad as described in

Section 5.1.2. If for some reason, a given chunk of global address space cannot be mapped to stash using

the AddMap call, the program can always fall back to the way scratchpads are currently used. This enables

using all current scratchpad code in our system.

5.3.4 Stash Allocation Management

Two thread blocks, within a given process or across processes, get different stash allocations when they are

scheduled. So two stash addresses from two different thread blocks never point to the same location in the

stash. Each thread block sub divides its stash allocation across multiple data structures that it accesses in

a given kernel. These sub divisions can be in any one of the usage modes described earlier. As a result,

a given stash location corresponds to only a single mapping, if any. So a given stash address cannot map

to two global addresses at the same time. But a given global address can be replicated at multiple stash

addresses (as long as the data-race freedom assumption holds). This is handled by the coherence mechanism

(Section 5.4.4).
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5.4 Stash Hardware Design

This section describes the design of the stash hardware, which is aimed primarily at providing stash-to-global

address translations and vice versa for misses, writebacks, and remote requests. The next three sub-sections

describe the stash hardware components, the stash hardware operations, and hardware support for stash

coherence respectively.

5.4.1 Stash Components

The stash consists of four hardware components shown in Figure 5.3: (1) stash storage, (2) stash-map, (3)

VP-map, and (4) map index table. This section briefly describes each component; the next section describes

how they together enable the different stash operations in more detail.

Stash Storage

This component consists of data storage similar to a scratchpad. It also has storage for per-word state to

identify hits and misses (dependent on the coherence protocol) and state bits for writebacks.

Stash-Map

The stash-map contains an entry for each mapped stash data partition. An entry contains the information to

translate between the stash and the global virtual address space (as specified by an AddMap of ChgMap
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call). For GPUs, there is one such entry per thread block (or workgroup). Stash, similar to a scratchpad,

is partitioned among multiple thread blocks. The scheduling of these thread blocks on a given core (and

allocation of specific stash space) occurs only at runtime. Hence, each stash-map entry needs to capture

thread block specific mapping information including the runtime stash base address provided by AddMap

(or ChgMap). Figure 5.3 shows a stash-map entry with fields from AddMap/ChgMap and two additional

fields: a V alid bit and a #DirtyData field used for writebacks. We can pre-compute much of the informa-

tion required for the translations and do not need to store all the fields in the hardware (see Section 5.4.3).

The stash-map can be implemented as a circular buffer with a tail pointer. Our design makes sure that

the entries in stash-map are added and removed in the same order for easy management of stash-map’s

fixed capacity. The number of entries should be at least the maximum number of thread blocks a core can

execute in parallel times the maximum number of AddMap calls allowed per thread block. We found that

applications did not use more than four map entries simultaneously. So assuming eight thread blocks used

in parallel, 64 map entries were sufficient.

VP-map

A stash-to-global mapping can span multiple virtual pages. We need virtual-to-physical translations for each

such page to move data (implicitly) between stash and main memory. VP-map uses two structures for this

purpose. The first structure, TLB, provides a virtual to physical translation for every mapped page, required

for stash misses and writebacks. We can leverage the core’s TLB for this purpose. For remote requests which

come with a physical address, we need a reverse translation from the physical page number to the virtual

page number. The second structure, RTLB, provides this reverse translation and is implemented as a CAM

over physical page numbers. The TLB and RTLB can be merged into a single structure, if needed, to reduce

area.

Each entry in the VP-map has a pointer (not shown in Figure 5.3) to an entry in the stash-map that

indicates the latest stash-map entry that requires the given translation. When a stash-map entry is replaced,

any entries in the VP-map that have a pointer to the same map entry are also removed as this translation

is no longer needed. By keeping the RTLB entry (and the TLB entry if kept separate from system TLB)

around until the last mapping that uses it is removed, we guarantee that we never miss in the RTLB.
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Map Index Table

The map index table per thread block gives an index into the thread block’s stash-map entries. An AddMap

allocates an entry into the map index table. Assuming a fixed ordering of AddMap calls, the compiler can

determine which table entry corresponds to a mapping – it includes this entry’s ID in future stash instructions

corresponding to this mapping (using the format in Section 5.3). The size of the table is the maximum

number of AddMaps allowed per thread block (our design allocates four entries per thread block). If the

compiler runs out of these entries, it cannot map any more data to the stash.

5.4.2 Operations

We next describe in detail how different stash operations are implemented.

Hit: On a hit (determined by coherence bits as discussed in Section 5.4.4), the stash acts like a scratchpad,

accessing only the storage component.

Miss: A miss needs to translate the stash address into a global physical address. It uses the map table index

provided by its instruction to determine its stash-map entry. Given the stash address and the stash base

from the stash-map entry, we can calculate the stash offset. Using the stash offset and the other fields of

the stash-map entry, we can calculate the virtual offset (details in Section 5.4.3). Once we have the virtual

offset, we can add it to the virtual base of the stash-map entry providing us with the corresponding global

virtual address for the given stash address. Finally, using the VP-map we can determine the corresponding

physical address which is used to handle the miss.

Additionally, a miss must consider if the data it replaces needs to be written back and a store miss must

perform some bookkeeping to facilitate a future writeback. These actions are described next.

Lazy writebacks: On a store, we need to maintain the index of the current stash-map entry for a future

lazy writeback. A simple implementation will store the stash-map entry’s index per word which is not space

efficient. Instead, we store the index at the granularity of a larger chunk of stash space, say 64B, and perform

writebacks at the same granularity.4 To know when to update this per chunk stash-map index, we have a

dirty bit per stash chunk. On a store miss, if this dirty bit is not set, we set it and update the stash-map index.

In addition to updating the stash-map index, we also update the #DirtyData counter of the stash-map

entry to track the number of dirty stash chunks in the corresponding stash space. The per chunk dirty bits
4One of the side effects of this approach is that the data structures need to be aligned at the chosen chunk granularity.
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are unset at the end of the thread block.

Lazy writebacks require recording that a stash word needs to be lazily written back. We use an additional

bit per chunk to indicate the need to writeback. This bit is set for all the dirty stash chunks at the end of a

thread block. Whenever a new mapping needs a stash location that was marked to be written back, we use

the per chunk stash-map index to access the stash-map entry – similar to a miss, this allows us to determine

the physical address to which the writeback is sent. A writeback of a word in a chunk triggers a writeback

of all the dirty words (leverage coherence state to determine which words are dirty) in the chunk. On a

writeback, the #DirtyData counter of the map entry is decremented. When the counter reaches zero, the

map entry is marked as invalid.

AddMap: An AddMap call advances the stash-map’s tail, and sets the next entry of its thread block’s map

index table to point to this tail entry. It updates the stash-map tail entry with its parameters and sets it to

V alid (Section 5.4.1). It also deletes any entries from the VP-map that has the new stash-map tail as the

back pointer.

If the new stash-map entry was previously valid, then it indicates an old mapping that is no longer being

used, but still has dirty data that has not yet been (lazily) written back. We initiate these writebacks and

block the core until they are done. Alternately, a scout pointer can stay a few entries ahead of the tail,

triggering non-blocking writebacks for valid stash-map entries. This case is rare because we expect a new

mapping to have already reclaimed the stash space held by the old mapping, writing back the old dirty data

on replacement. The above process ensures that the entries in stash-map are removed in the same order that

they were added so that we can guarantee we never miss in RTLB for remote requests.

Finally, for every virtual page mapped, an entry is added to the RTLB (and TLB if maintained sepa-

rately in addition to system’s TLB) of VP-map. If the system TLB has the physical translation for this page,

we populate the corresponding entries in VP-map. If the translation does not exist in the TLB, the physical

translation is acquired at the subsequent stash miss. For every virtual page in the current map, the stash-map

pointer in the corresponding entries in VP-map is updated to point to the current map entry. In the unlikely

scenario where the VP-map becomes full and has no more space for new entries, we advance the tail of the

stash-map (along with performing any necessary writebacks) until at least one entry in VP-map is removed.

ChgMap: ChgMap updates a current stash-map entry with new mapping information for given stash data.

If isCoherent is modified from true to false, then we need to issue writebacks for the old mapping. Instead,
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if it is modified from false to true, we need to issue ownership/registration requests for all dirty words in the

old mapping according to the coherence protocol employed (Section 5.4.4).

5.4.3 Address Translation

/∗ Va lu es t h a t can be precomputed ∗ /

/ / s t a s h B y t e s P e r R o w = ( r o w S i z e / o b j e c t S i z e ) ∗ f i e l d S i z e

/ / v i r t u a l T o S t a s h R a t i o = s t r i d e S i z e / s t a s h B y t e s P e r R o w

/ / o b j e c t T o F i e l d R a t i o = o b j e c t S i z e / f i e l d S i z e

/∗ s t a s h B a s e i s o b t a i n e d from t h e s t a s h−map e n t r y ∗ /

s t a s h O f f s e t = s t a s h A d d r e s s − s t a s h B a s e

f u l l Ro w s = s t a s h O f f s e t ∗ v i r t u a l T o S t a s h R a t i o

las tRow = ( s t a s h O f f s e t % s ta shBy te sPe rRow ) ∗ o b j e c t T o F i e l d R a t i o

v i r t u a l O f f s e t = f u l lR o w s + las tRow

/∗ v i r t u a l B a s e i s o b t a i n e d from t h e s t a s h−map e n t r y ∗ /

v i r t u a l A d d r e s s = v i r t u a l B a s e + v i r t u a l O f f s e t

Listing 5.1 Translating stash address to virtual address

Listing 5.1 shows the logic for translating a stash offset to its corresponding global virtual offset. The

stash offset is obtained by subtracting a stash address (provided with the instruction) from the stash base

found in the stash-map entry. As shown in the translation logic, we do not need to explicitly store all

the parameters of an AddMap call in the hardware. We can pre-compute information required for the

translations. For example, for stash to virtual translation, we can pre compute three values. First, we

need the number of bytes in stash that a given row in the global space corresponds to. This is equal to

the number of bytes the shaded fields in a given row amount to in Figure 5.2a. This value is stored in

stashBytesPerRow. Next to account for the gap between the two global rows, we need to know the global

span of stashBytesPerRow. So we calculate the ratio of strideSize to stashBytesPerRow. This value
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is stored in virtualToStashRatio. virtualToStashRatio helps us find the corresponding global row for

a given stash address. Finally, to calculate the relative position of the global address within the identified

row, we need the ratio of object size to field size, stored in objectToF ieldRatio. Using these pre-computed

values, we can get the corresponding virtual span (virtual offset) for all the full rows of the tile the stash

offset spans and for the partial last row (if any). This virtual offset is added to the virtual base found in

the stash-map entry to get the corresponding virtual address. Overall, we need six arithmetic operations per

miss.

/∗ Va lu es t h a t can be precomputed ∗ /

/ / s t a s h B y t e s P e r R o w = ( r o w S i z e / o b j e c t S i z e ) ∗ f i e l d S i z e

/ / s t a s h T o V i r t u a l R a t i o = s t a s h B y t e s P e r R o w / s t r i d e S i z e

/ / f i e l d T o O b j e c t R a t i o = f i e l d S i z e / o b j e c t S i z e

/∗ v i r t u a l B a s e i s o b t a i n e d from t h e s t a s h−map e n t r y ∗ /

v i r t u a l O f f s e t = v i r t u a l A d d r e s s − v i r t u a l B a s e

f u l l Ro w s = v i r t u a l O f f s e t ∗ s t a s h T o V i r t u a l R a t i o

las tRow = ( v i r t u a l O f f s e t % rowSize ) ∗ f i e l d T o O b j e c t R a t i o

s t a s h O f f s e t = f u l lR o w s + las tRow

/∗ s t a s h B a s e i s o b t a i n e d from t h e s t a s h−map e n t r y ∗ /

s t a s h A d d r e s s = s t a s h B a s e + s t a s h O f f s e t

Listing 5.2 Translating virtual address to stash address
The logic for the reverse translation of global address to stash address is similar and is shown in List-

ing 5.2.

5.4.4 Coherence Protocol Extensions for Stash

All Mapped Coherent stash data must be kept coherent. We can use any coherence protocol or extend it.

We can either use a traditional hardware protocol such as MESI5 or a software-driven hardware coherence

protocol like DeNovo (Chapter 2), as long as it supports the following three features:
5We assume data-race-free programs.
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Tracking at word granularity: Stash data must be tracked at word granularity because only useful words

from a given cache line are brought into the stash.6

Merging partial cache lines: When the stash sends data to a cache (either as a writeback or a remote miss

response), it may send only part of a cache line. The the cache must be able to merge partial cache lines.

Map index for physical-to-stash mapping: When data is modified by a stash, the directory needs to record

the modifier core (as usual) and also the stash-map entry for that data (so that a remote request to that data

can easily determine where to obtain it from the stash).

We can support the above features in a traditional single-writer directory protocol (e.g., MESI) with

minimal overhead by retaining coherence state at line granularity, but adding a bit per word to indicate

whether its up-to-date copy is present in a cache or a stash. Assuming a shared last level cache (LLC), when

a directory receives a stash store miss request, it transitions to modified state for that line, sets the above bit

in the requested word, and stores the stash-map index (obtained with the miss request) in the data field for

the word at the LLC. Although this is a straightforward extension, it is susceptible to false-sharing (and the

stash may lose the predictability of a guaranteed hit after an initial load). To avoid false sharing, we could

use a sector-based cache with word sized sectors, but this incurs heavy overhead (state bits and sharers list

per word at the directory).

Sectored protocols: Alternatively, we can use DeNovo from Chapter 2 that already has word granularity

sectors (coherence state is at word granularity, but tags are at conventional line granularity). Since such

sectored protocols already track coherence state per word, they do not need the above extra bit to indicate

whether the word is in a cache or stash – in modified state, the data field of the word in the LLC can encode

the core where the data is modified, whether it is in the stash or cache at the core, and the stash-map entry

in the former case.

Table 5.4.4 summarizes the storage overhead discussion above to support stash for variants of the MESI

protocol (including the word based protocol) and the DeNovo protocol.

For this work, without loss of generality, we extended the DeNovo protocol for its simplicity. We ex-

tended the line based DeNovo protocol from Chapter 2 (with line granularity tags and word granularity

coherence), originally proposed for multicore CPUs and deterministic applications, to work with hetero-

geneous CPU-GPU systems with stashes at the GPUs. We do not use the touched bit and regions in our
6We can support byte granularity accesses as long as all (stash-allocated) bytes in a word are accessed by the same core at a

time; i.e., there are no word level data races. The benchmarks we have studied do not have byte granularity accesses.
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Protocol Tag State Sharer’s List Stash Map
Overhead Overhead Overhead Overhead

MESI word 16 * N 16 * 5 = 80 16 * P 0
MESI line N 5 P 16

MESI line with 16 sectors N 16 * 5 = 80 16 * P 0
DeNovo line N 2 + 16 = 18 0 0

(Section 2.7)

Table 5.2 Storage overheads (in bits) at the directory to support stash for various protocols. These
calculations assume 64 byte cache lines with 4 byte words, N = tag bits, P = number of processors, and
five state bits for MESI. We assume that the map information at the L2 can reuse the L2 data array
(the first bit indicates if the data is a stash map index or not, the rest of the bits hold the index).

extensions. Although later versions of DeNovo support non-deterministic codes [130], our applications are

deterministic. Further, although GPUs support non-determinism through operations such as atomics, these

are typically resolved at the shared cache and are trivially coherent. Our protocol requires the following

extensions to stash operations:

Stores: The DeNovo coherence protocol has three states, similar to that of the MSI protocol. Stores are

considered a miss when in Shared or Invalid state. All store misses need to obtain registration (analogous

to MESI’s ownership) from the directory. In addition to registering the core ID at the directory, registration

requests for words in the stash will also include the ID of the entry in the map.

Self-invalidations: At the end of a kernel we keep the data that is registered by the core (specified by the

coherence state) but self-invalidate the rest of the entries to make the stash space ready for any future new

allocations. In contrast, a scratchpad invalidates all the entries (after explicitly writing the data to the global

address space).

Remote requests: Remote requests for stash that are redirected via the directory come with a physical

address and a stash-map index (stored at the directory during the request for registration). Using the physical

address, VP-map provides us with the corresponding virtual address. Using the stash-map index, we can

obtain all the mapping information from the corresponding stash-map entry. We use the virtual base address

from the entry and virtual address from the VP-map to calculate the virtual offset. Once we have the virtual

offset and all other fields of the map entry, we can calculate the stash offset (translation logic in Listing 5.2),

add it to the stash base, giving us the stash address.
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5.4.5 Stash Optimization: Data Replication

It is possible for two allocations in stash space to be mapped to the same global address space. This can

happen if the same read-only data is simultaneously mapped by several thread blocks in a core, or if data

mapped in a previous kernel is mapped again in a later kernel on the same core. By detecting this replication

and copying replicated data between stash mappings, it is possible to avoid costly requests to the directory.

To detect data replication, we can make the map a CAM, searchable on the virtual base address. On

an AddMap (an infrequent operation), the map is searched for the virtual base address of the entry being

added to the map. If there is a match, we compare the tile specific parameters to confirm if the two mappings

indeed perfectly match. If there is a match, we set a bit, reuseBit, and add a pointer to the old mapping in

the new map entry. On a load miss, if the reuseBit is set, we first check the corresponding stash location of

the old mapping and copy the value over if present. If not, we issue a miss to the directory.

If the new map entry is non-coherent and both the old and new map entries are for the same allocation

in the stash, we need to writeback the old data. Instead, if the new map entry is coherent and both the old

and new map entries are for different allocations in the stash, we need to send new registration requests for

the new map entry.

5.5 Summary

Caches and scratchpads are two popular memory organization units. Caches are easy to program but are

power-inefficient with TLB accesses, tag comparisons, and non-compact data storage. In contrast to caches,

a scratchpad is a software managed, directly addressable memory that does not incur energy overheads

of tag and TLB lookups, does not incur performance pathologies from conflict misses, and does not need

to store data at the granularity of cache lines. However, scratchpads are only locally visible resulting in

explicit movement of data between the global address space and the scratchpad, pollution of L1 caches, loss

of performance with on-demand accesses, and no data reuse across kernels.

We proposed a new structure called the stash that is a hybrid of a cache and a scratchpad. Like a

scratchpad, it is directly addressable and provides compact data storage. Like a cache, stash is a globally

visible unit and has a mapping to global memory. Stash data can be copied implicitly without the overhead

of additional instructions purely for data transfer. Stash also does not pollute the L1 cache and does not
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suffer from on-demand accesses. Stash facilitates lazy writebacks and thus, has data reuse across kernels.

As a result the stash combines the benefits of both caches and scratchpads. One of the usage modes of

stash, Mapped Coherent, requires that the data be kept coherent with the rest of the system. We describe

three features a coherence protocol should support to be applicable for stash. In our implementation, we

employed the DeNovo coherence protocol introduced in Chapter 2 with minor extensions (Section 5.4.4).

In the next chapter (Chapter 6) we evaluate the performance of stash compared to scratchpad and cache

organizations for several microbenchmarks and applications. We also provide some future directions that

can take the stash organization to other levels in the memory hierarchy and study storage inefficiencies of

organizations beyond caches and scratchpads in Chapter 8.

69



CHAPTER 6

PERFORMANCE EVALUATION OF THE
STASH ORGANIZATION

We extend the simulator infrastructure described in Section 4.1 for evaluating the stash organization. In the

following sections, we describe these extensions to build a tightly coupled heterogeneous simulator. We also

describe the performance and energy evaluations of the stash organization compared to the scratchpad and

the cache organizations.

6.1 Simulator Infrastructure

We created an integrated CPU-GPU simulator using the system described in Section 4.1 to model the CPU

and GPGPU-Sim v3.2.1 [15] to model the GPU. We use Garnet [8] to model a 4x4 mesh interconnect that

has a GPU CU or a CPU core at each node. We use CUDA 3.1 [2] for the GPU kernels in the applications

since this is the latest version of CUDA that is fully supported in GPGPU-Sim. Table 6.3 summarizes the

key parameters of our simulated systems. We chose a slightly different configuration for the CPU compared

to the one used for evaluating the DeNovo protocol (e.g., cache sizes and number of cores). This is largely

dependent on the working set sizes of the applications we ran and being able to run them in reasonable

simulation time. Our GPU is similar to an NVIDIA GTX 480.

As shown in Listing 5.1, we need six arithmetic operations for each translation between stash and global

addresses. These operations need to be performed sequentially and the latency can be hidden by pipelining

multiple requests for translation. So we do not model the latency of the stash hardware in our simulations

but we do model its energy.

For energy comparisons, we extended GPUWattch [85] to measure the energy of the GPU CUs and
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Hardware Unit Hit Energy Miss Energy
Scratchpad 5.53E-11J –

Stash 5.54E-11J 8.68E-11J
L1 cache (8-way assoc.) 1.77E-10J 1.97E-10J

TLB access 1.41E-11J 1.41E-11J2

L1 cache + TLB 1.91E-10J 2.11E-10J

Table 6.1 Per access hit and miss energies (in Joules) for various hardware units.

the memory hierarchy including all stash components. To model stash storage, we extended the model

for scratchpad available in GPUWattch to add additional bits for state information. We modeled the stash-

map as an SRAM structure, VP-map as a CAM unit, and an ALU for each operation in the translation is

modeled using an in-built ALU model in GPUWattch. The sizes for these hardware components are listed

in Table 6.3. For our simulated system, GPUWattch estimated the peak dynamic power per GPU core to be

2.473W of which 0.13W is contributed by stash (0.09W by stash storage and the rest by its other hardware

components).

We also use McPAT v1.1 [88] for our NoC energy measurements.1 We do not measure the CPU core or

the CPU L1 caches as our proposed stash design is implemented on the GPU. But we do charge the network

traffic that originates from and destined to the CPU so that we measure any variations in the network caused

by stash.

6.2 Baseline Heterogeneous Architecture

Interconnect

CPU Core L1 $

L2 $ Bank

…

…

CPU Core L1 $

L2 $ Bank

L1 $GPU CU Scr
L1 $GPU CU Scr

L2 $ Bank L2 $ Bank

Figure 6.1 Baseline integrated architecture.
1We use McPAT’s NoC model instead of GPUWattch’s because our tightly coupled system more closely resembles a multicore

system’s NoCs.
2We do not model a TLB miss, so all our TLB accesses are charged as if they are hits.

71



Figure 6.1 shows our baseline heterogeneous architecture. It is a tightly integrated CPU-GPU system

with a unified shared memory address space and coherent caches. The system is composed of multiple CPU

and GPU cores, which are connected via an interconnection network. Each GPU CU, which is analogous

to an NVIDIA Streaming Multiprocessor (SM), has a separate node on the network. We believe that this

design point better represents the needs of future systems than today’s integrated CPU-GPU systems. All

CPU and GPU cores have an attached block of SRAM. For CPU cores, this is an L1 cache, while for GPU

cores, it is divided into an L1 cache and a scratchpad. Each node also has a bank of the L2 cache, which is

shared by all CPU and GPU cores. The stash is located at the same level as the GPU L1 caches and both the

cache and stash write their data to the backing L2 cache bank.

Determining a uniform write policy for the L1 caches was a challenge as modern CPUs and GPUs use

different policies: CPU multi-core systems commonly use writeback (WB) while GPU CUs use writethrough

(WT). To avoid flooding the network with GPU WT requests, modern integrated CPU-GPU systems aggre-

gate all of the GPU’s cores at a single node in the network and have a local WB L2 that node to filter the

GPU’s WT traffic. However, this approach isn’t scalable with increasing number of GPU cores. To find an

appropriate solution, we considered several choices. We considered adding a shared L3 for both CPU and

GPU. However, this wouldn’t have resolved the issue of GPU’s traffic all emanating from a single node.

Instead we decided to make all of the L1 caches in the system use a WB policy. To ensure that the most

up-to-date value has been written back to L2, we use a HW-SW co-designed coherence mechanism, as

discussed in Section 5.4.4.

6.3 Simulated Memory Configurations

We use an extended version of the DeNovo protocol that supports the stash organization (including our

optimizations for data replication). For configurations using scratchpads, only the global memory requests

from GPU are seen by the memory system.

To compare the performance of stash against a DMA technique, we enhanced the scratchpad with a

DMA engine. Our implementation is based on the D2MA design [70]. D2MA provides DMA capability for

scratchpad loads on discrete GPUs and supports strided DMA mappings. Every scratchpad load in D2MA

needs to check if it is part of one of the scratchpad blocks that is currently being populated by a pending

DMA. When such a check passes, D2MA blocks the execution at a warp granularity. Unlike D2MA, our
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implementation blocks memory requests at a core granularity, supports DMAs for stores in addition to loads,

and runs on a tightly-coupled system.

The DMA optimization for scratchpads gives an additional advantage of prefetching data. To evaluate

the effect of prefetching, we applied a prefetch optimization to stash. Unlike DMA for scratchpads, prefetch

for stash does not block the core as our stash accesses are globally visible and duplicate requests are handled

by the MSHR. We conservatively do not charge additional energy for the DMA or the prefetch engine that

issues the requests.

We evaluate the following configurations:

1. Scratch: 16 KB Scratchpad + 32KB L1 Cache. The memory accesses use the default memory type

specified in the original application.

2. ScratchG: Scratch with all global accesses converted to scratchpad accesses.

3. ScratchGD: ScratchG configuration with DMA support

4. Cache: 32 KB L1 Cache with all scratchpad accesses in the original application converted to global

accesses.

5. Stash: 16 KB Stash + 32KB L1 Cache. The scratchpad accesses from the Scratch configuration

have been converted to stash accesses.

6. StashG: Stash with global accesses converted to stash accesses.

7. StashGP : StashG configuration with prefetching support.

6.4 Workloads

We present results for a set of benchmark applications as well as four custom microbenchmarks. The larger

benchmark applications demonstrate the effectiveness of the stash design on real workloads and evaluate

what benefits the stash can provide for existing code. However, these existing applications are tuned for

execution on a GPU with current scratchpad designs that do not efficiently support data reuse, control/data

dependent memory accesses, and accessing specific fields from an AoS. As a result, modern GPU applica-

tions typically do not use these features. But stash is a forward looking memory organization designed both
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to improve current applications and increase the use cases that can benefit from using scratchpads. Thus, to

demonstrate the benefits of the stash, we evaluate it for microbenchmarks designed to show future use cases.

6.4.1 Microbenchmarks

We evaluate four microbenchmarks: Implicit, Pollution, On-demand, and Reuse. Each microbenchmark is

designed to emphasize a different benefit of the stash design. All four microbenchmarks use an input array

of elements in AoS format; each element in the array is a struct with multiple fields. The GPU kernels access

a subset of the structure’s fields; the same fields are subsequently accessed by the CPU to demonstrate how

the CPU cores and GPU CUs communicate data that is mapped to the stash. We use a single GPU CU for

all microbenchmarks. We also parallelize the CPU code across 15 CPU cores to prevent the CPU accesses

from dominating execution time. The details of each microbenchmark are discussed below.

Implicit highlights the benefits of the stash’s implicit loads and lazy writebacks as described in Sec-

tion 5.4.2. In this microbenchmark, the stash maps one field from each element in an array of structures.

The GPU kernel reads and writes this field from each array element. The CPUs then access this updated

data.

Pollution highlights the ability of the stash to avoid cache pollution through its use of implicit loads that

bypass the cache. Pollution’s kernel reads and writes one field each from two AoS arrays A and B; A is

mapped to the stash or scratchpad while B uses the cache. A is sized to prevent reuse in the stash in order to

demonstrate the benefits the stash obtains by not polluting the cache. B can fit inside the cache only without

pollution from A. Both stash and DMA achieve reuse of B in the cache because they do not pollute the

cache with explicit loads and stores.

On-demand highlights the on-demand nature of stash data transfer and is representative of an appli-

cation with fine-grained sharing or irregular accesses. The On-demand kernel reads and writes only one

element out of 32, based on runtime condition. Scratchpad configurations (including ScratchGD) must con-

servatively load and store every element that may have been accessed. Cache and stash, however, are able

to identify a miss and generate a memory request only when necessary.

Reuse highlights the stash’s data compaction and global visibility and addressability. This microbench-

mark repeatedly invokes a kernel which accesses a single field from each element of a data array. The

relevant fields of the data array can fit in the stash but not in the cache because it is compactly stored in
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the stash. Thus, each subsequent kernel can reuse data that has been loaded into the stash by a previous

kernel and lazily written back. In contrast, the scratchpad configurations (including ScratchGD) are unable

to exploit reuse because the scratchpad is not globally visible. Cache cannot reuse data because it is not

capable of data compaction.

6.4.2 Applications

Table 6.2 lists the seven larger benchmark applications we use to evaluate the effectiveness of the stash.

The applications are from Rodinia [41, 43], Parboil [127], and Computer Vision [51, 20].

We manually modified the applications to use a unified shared memory address space (i.e., we removed

all explicit copies between the CPU and GPU address spaces present in a loosely-coupled system). We also

added the appropriate map calls based on the different stash modes of operation (from Section 5.3.3). The

types of mappings used in each application (for all kernels combined) is listed in Table 6.2. The compilation

process involved three steps. In the first step, we used NVCC to generate the PTX code for GPU kernels

and an intermediate C++ code with CUDA specific annotations and functions. In the second step we edit

these function calls so that they can be intercepted by Simics and can be passed on to GPGPUSim during

the simulation. This step is automated in our implementation. Finally, we compile the edited C++ files

using g++ (version 4.5.2) to generate the binary. We did not introduce any additional compilation overheads

compared to a typical compilation of a CUDA program. Even when a CUDA application is compiled for

native execution, there are two steps involved - NVCC emitting the PTX code and an annotated C++ program

and g++ converting this C++ code into binary (these steps are hidden from the user). All of our benchmark

applications execute kernels on 15 GPU CUs. We use only a single CPU core as these applications have

very little work performed on the CPU and are not parallelized.

6.5 Results

6.5.1 Access Energy Comparisons

Table 6.1 shows per access hit and miss energies of various hardware components used in our simulations.

The table shows that scratchpad access energy (no misses for scratchpad accesses) is 29% of the L1 cache
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Application Input Size Stash Usage Modes
# Mapped Coherent # Mapped Non-coherent

LUD [41, 43] 256x256 matrix 4 3
SURF [51, 20] 66 KB image 1 1

Backprop [41, 43] 32 KB 2 4
NW [41, 43] 512x512 matrix 2 2

Pathfinder [41, 43] 10 x 100K matrix 1 4
SGEMM [127] A: 128x96, B: 96x160 1 2
Stencil [127] 128x128x4, 4 iterations 1 3

Table 6.2 Input sizes and stash usage modes of Applications.

hit energy. Stash’s hit energy is comparable to that of scratchpad and its miss energy is 41% of the L1 cache

miss energy. These numbers show that accessing stash is energy-efficient compared to that of a cache and

its hit energy is comparable to that of a scratchpad. We use these access energies in our energy evaluations

described next.

For L1 caches we assumed an 8-way associative cache with no way prediction. To estimate the difference

between the access energy of stash compared to a way-predicted cache, we modeled a similar sized direct-

mapped cache and found the hit and miss energies (including TLB access) to be 8.84E-11J and 1.74E-10J

respectively. The stash access energies described in Table 6.1 are still less compared to that of a direct-

mapped cache, but the difference is much less compared to a 8-way associative cache. If we used a similar

sized direct-mapped cache as that of stash (16KB), the hit and miss energies are instead 7.89E-11J and

9.78E-11J respectively, which are still greater than the stash energies. Note that a way misprediction will

result in additional energy overheads. As our GPU simulator, GPGPU-Sim, does not support way prediction,

we use an associative cache for our energy numbers. If way prediction is used, stash will still outperform in

terms of energy per access.

6.5.2 Microbenchmarks

Figure 6.2 shows the execution time, energy, GPU instruction count, and network traffic for our microbench-

marks using scratchpad (Scratch), cache (Cache), scratchpad with DMA (ScratchGD), and stash (Stash).

The remaining configurations (ScratchG, StashG, and StashGP) do not aid us in better demonstrating the

benefits of stash when used for these microbenchmarks. So we do not evaluate them here. Energy bars

are divided by where energy is consumed: GPU core, L1 cache, scratchpad/stash, L2 cache, or network.

Network traffic bars are divided by message type: read, write, or writeback.
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Figure 6.2 Comparison of microbenchmarks. The bars are normalized to the Scratch configuration.
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CPU Parameters
CPU Frequency 2 GHz

CPU cores (applications) 1
CPU cores (microbenchmarks) 15

GPU Parameters
Frequency 700 MHz

GPU cores (applications) 15
GPU cores (microbenchmarks) 1

Scratchpad/Stash Size 16 KB
Number of Banks in Stash/Scratchpad 32

Memory Hierarchy Parameters
L1 Size (8 banks) 32 KB

L2 Size (16 banks, NUCA) 4 MB
TLB & RTLB 64 entries

Stash map 64 entries
L1 and Stash hit latency 1 cycle

Remote L1 and Stash hit latency 35−83 cycles
L2 hit latency 29−61 cycles

Memory latency 197−261 cycles

Table 6.3 Parameters of Simulated Heterogeneous System

Our results show that, on average, the stash is faster and consumes less energy than the scratchpad, cache,

and DMA configurations – 25%, 11%, and 12% faster respectively and 48%, 36%, and 30% less energy

respectively. Overall, the microbenchmark results show that (a) the stash performs better than scratchpad,

caches, and scratchpad with DMA; and (b) data structures and access patterns that are currently unsuitable

for scratchpad storage can be efficiently mapped to stash. We next discuss the sources of these benefits for

each configuration.

Scratchpad vs. Stash

Compared with the scratchpad configuration, stash enjoys the following benefits of global addressing

and global visibility.

Implicit data movement: By implicitly transferring data to local memory, stash executes 40% fewer instruc-

tions than scratchpad for the Implicit benchmark and as a result decreases execution time by 11% and energy

consumption by 25%.

No cache pollution: Unlike scratchpad, stash does not access the cache when transferring data to or from

local memory. By avoiding cache pollution, stash consumes 41% less energy and cuts execution time by

30% in the Pollution benchmark.
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On-demand loads into structures: The advantages of on-demand loads can be seen in the On-demand mi-

crobenchmark results. Since stash only transfers the data it accesses into local memory, stash reduces energy

consumption by 52% and execution time by 25% relative to scratchpad, which must transfer the entire data

array to and from the local memory.

Lazy writebacks/Reuse: Lazy writeback enables data reuse across kernels, demonstrated in Reuse. Because

it can avoid repeated transfers to and from the same core, stash consumes 72% less energy and executes in

34% less time than scratchpad.

The primary benefit of scratchpad is its energy efficient access. Scratchpad has less hardware overhead

than stash and does not require a state check on each access. However, the software overhead required

to load and write out data limits the use cases of scratchpad to regular data that is accessed frequently

within a kernel. By adding global visibility and global addressability, stash memory eliminates this software

overhead and can attain the energy efficiency of scratchpad (and higher) on a much larger class of programs.

Cache vs. Stash

Compared to cache, stash benefits from direct addressability and compact storage. Stash accesses do

not need a tag lookup, do not incur conflict misses, and only need to perform address translation on a

miss, so a stash access consumes less energy than a cache access for both hits and misses. This benefit

can be seen in the reduction of the stash energy component of the stash configuration when compared

with the L1 D cache energy component of the cache configuration, an average 69% decrease across all

microbenchmarks. This contributes to an overall 33% energy reduction on average. The benefits of data

compaction are demonstrated in the Pollution and Reuse microbenchmarks. The data reuse benefit explored

by the Reuse microbenchmark is not applicable to caches. In both cases, the cache configuration is forced

to evict and reload data because it is limited by cache line storage granularity and cannot efficiently store

a strided array. Stash is able to fit more data in local storage without polluting the cache and achieves a

decrease of up to 69% in energy and up to 21% in execution time relative to cache.

Cache is able to store much more irregular structures and is able to address a much larger global data

space than stash. However, when a data structure is linearizable in memory and can fit compactly in the

stash space, stash can provide much more efficient access than cache with significantly less overhead than

scratchpad.

ScratchGD vs. Stash
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Applying DMA to a scratchpad configuration mitigates many of the inefficiencies of scratchpad memory

by initiating data transfers from hardware and bypassing the cache. Even so, such a configuration still lacks

many of the benefits of global addressability and visibility present in stash. First, since scratchpad is not

globally addressable, DMA must explicitly transfer all data to and from the scratchpad before and after each

kernel. All threads must wait for the entire DMA load to complete before accessing the array, which can

stall threads unnecessarily and create bursty traffic in the network. Second, DMA must transfer all data in

the mapped array whether or not it is accessed by the program. The On-demand microbenchmark highlights

the problem when accesses are sparse and unpredictable. Stash achieves 41% lower energy and 50% less

network traffic. Third, since scratchpad is not globally visible, DMA is unable to take advantage of reuse

across kernels; therefore, stash sees 84% traffic reduction, 62% energy reduction, and 27% execution time

reduction in the Reuse microbenchmark. DMA also incurs additional local memory accesses compared with

stash because it accesses the scratchpad at the DMA load, the program access, and the DMA store. This

results in an average 46% reduction in the stash/scratchpad energy component for stash.

Nevertheless, in two cases, DMA does slightly better. First, for Implicit, stash sees 4% higher execution

time. While DMA writes back data at the end of each kernel (WB traffic), stash only needs to register

modified data (Write traffic). This results in average 33% less network traffic across all microbenchmarks

for stash, but the indirection this causes for subsequent remote requests can cause added latency. This

is the cause of the slight increase in stash execution time in Implicit. However, this slowdown could be

avoided with a prediction mechanism to determine the remote location of data, bypassing the indirection of

the registry lookup. The registration requests can also increase traffic if the data is evicted from the stash

before its next use, as happens with the pollution microbenchmark. Here the stash suffers higher network

traffic because it issues both registration and writeback requests. In general, though, global visibility and

addressability improve performance and energy and make stash feasible for a wider range of data access

patterns.

These results validate our claim that the stash combines the advantages of scratchpads and caches into

a single efficient memory organization. Compared to a scratchpad, the stash is globally addressable and

visible; compared to a cache, the stash is directly addressable, has more efficient lookups, and provides

compact storage. Compared with a non-blocking DMA engine, the stash is globally addressable and visible

and transfers data on-demand, rather than using bulk transfers that conservatively copy all data that may
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be accessed and can cause unnecessary stalls. As a result, the stash configurations always outperform

the scratchpad and cache configurations, even in situations where a scratchpad or DMA engine would not

traditionally be used, while also providing decreased network traffic and energy consumption.

6.5.3 Applications

In this section we evaluate the seven configurations on the benchmark applications. First, we compare

Scratch, ScratchG, and Cache configurations. These comparisons are aimed at evaluating the default

access pattern (part scratchpad and part global accesses) of the application. Next, we compare Scratch

against Stash and StashG. With these comparisons, we validate the benefits of stash against scratchpads

(Stash) and caches (StashG). Finally, we evaluate the ScratchGD and StashGP configurations.

Scratch vs. ScratchG vs. Cache

Figure 6.3 shows the results for execution time, energy consumption, GPU instruction count, and net-

work traffic for the seven applications described in Section 6.4. These applications were selected for their

use of scratchpad, and we next focus on comparing the Scratch, ScratchG, and Cache configurations.

Figure 6.3a shows that ScratchG performs worse compared to Scratch for all applications except for

NW (no global accesses in Scratch). This is because the global accesses that are converted to scratchpad

accesses increase the overall instruction count (the global accesses are better off being global as there is no

temporal locality for these accesses). Converting all accesses to global accesses (Cache) generally has a

slight adverse effect on the execution time, incurring an average execution time increase of 2% relative to

Scratch. This increase is primarily due to the additional instructions needed to calculate global addresses

for applications such as LUD, SURF, and Backprop.

Figure 6.3b shows that ScratchG consumes more energy (up to 29%) as it increases both the instruction

count and the number of scratchpad access (the global access converted to scratchpad access still incurs a

cache access but also adds a scratchpad access) when compared to Scratch. Cache consumes significantly

more energy than the other configurations (average 31% more than Scratch) because cache accesses are

much more power-inefficient than scratchpad or stash accesses. Also cache accesses incur conflict misses

resulting in increased network traffic (explained next).

As expected, ScratchG increases instruction count compared to Scratch for all applications (except

NW as no global accesses) as more data is accessed via scratchpad (Figure 6.3c). Although Cache does
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Figure 6.3 Comparing scratchpad and cache configurations for the seven benchmark applications.
The bars are normalized to the Scratch configuration.
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not need instructions to explicitly transfer data to local memory as Scratch does, converting local accesses

to global accesses can introduce additional instructions for index computation in applications like LUD and

SURF.

Finally, Figure 6.3d compares the effect of the three configurations on the network traffic. ScratchG

performs comparable or slightly worse against Scratch. Compared to ScratchG, Cache always performs

worse as it suffers from conflict misses (more than 8X increase in traffic for NW).

These results show that Scratch, the default configuration that the application came with, performs

better and is energy-efficient compared to ScratchG and Cache configurations.

Scratch vs. Stash vs. StashG

Next we evaluate the stash configurations. By comparing Stash and Scratch, we show the benefits of

stash over a scratchpad. Similarly, by comparing StashG and Stash, we show the benefits of stash over a

cache.

Stash is up to 20% (average: 8%) faster than Scratch as shown in Figure 6.4a. The improvements are

especially good for LUD, NW, and Pathfinder, which exploit the stash’s global visibility to reuse data across

kernels. The StashG configuration further reduces the instruction count compared to Stash (see below).

As a result, using the stash organization for all accesses (StashG), we get an overall average reduction of

10% execution time compared to Scratch.

Stash configurations show reduction in energy consumption compared to Scratch (Figure 6.4b). This

reduction comes from (a) making the stash globally addressable, which removes the explicit copies and

decreases both GPU core energy and L1 cache energy (Stash vs. Scratch); and (b) converting global

accesses to stash accesses (StashG vs. Stash). The stash’s global addressing also removes cache pollution,

which affects the performance for applications like Backprop, and decreases the L1 cache energy compared

to the scratchpad. There are two positive energy implications when the global accesses are converted to

stash accesses: (i) a stash access is more energy-efficient compared to a cache access; and (ii) many index

computations performed by the core for a global access are now performed efficiently by the Stash−map

in hardware (seen as reduced ‘GPU core+’ portion for StashG compared to Stash). Overall, StashG

reduces energy consumption by up to 25% (average: 14%) compared to Scratch.

Figure 6.4c shows that the instruction count reduction for Stash compared to Scratch (12% aver-

age, 26% max) is more significant in applications that use the scratchpad/stash heavily such as LUD, NW,
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Figure 6.4 Evaluating the stash configurations for the benchmark applications. The bars are normal-
ized to the Scratch configuration.
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Pathfinder, SURF, and Backprop. StashG further reduces the instruction count as mentioned above result-

ing in an average 17% fewer instructions compared to Scratch. Stencil has the most benefit of converting

global accesses to stash accesses (StashG vs. Stash) in terms of instruction count as there are several

data structures that are used as global accesses in the original application. When these global accesses are

converted to stash accesses, the number of index computations are reduced and are efficiently performed by

the Stash−map in the hardware.

Figure 6.4d shows that stash (both Stash and StashG) has little effect on the network traffic for most of

the applications compared to scratchpad configurations. The stash configurations show increased writeback

traffic for PF. This is due to larger cache size (32KB) compared to the stash size (16KB), which Scratch

can utilize to avoid evicting data to the L2. Since stash data bypasses the cache, the larger cache space

goes unused in stash configurations. When the stash memory fills up, data is evicted to L2. To validate

this, we ran the stash configurations for PF with 48KB stash (keeping the cache at 32KB which is largely

unused on the GPU nodes for these configurations) instead and saw that the increased writeback traffic was

completely eliminated. So a system that has support for dynamic reconfiguration of on-chip memory can

help in this scenario and allocate a larger stash for such applications. The stash configurations also show

increased read traffic for LUD. The reason for this behavior is similar to that of the Implicit microbenchmark.

As stash keeps the data around, future accesses sometimes result in an indirection through the directory. As

mentioned earlier, a prediction mechanism to determine the remote location of data can help in this scenario.

Overall, the stash configurations show that stash has the best of both scratchpad and cache. When both

scratchpad and cache accesses are converted to stash accesses, we see a 10% reduction in execution time

and 14% reduction in energy consumption on average in our applications.

Figure 6.5 puts the two figures (Figure 6.3 and Figure 6.4) together for a better appreciation of the

benefits provided by stash.

StashG vs. ScratchGD vs. StashGP

As mentioned earlier, in addition to avoiding the instruction count overhead, ScratchGD has a poten-

tial advantage of prefetching the data compared to StashG. The StashGP configuration applies a similar

prefetch optimization to StashG. As our applications are not written to exploit other benefits that stash

provides over the ScratchGD (e.g., on-demand accesses and reuse of data), the performance and energy
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Figure 6.5 Comparisons of all scratchpad, stash, and cache configurations for the seven benchmark
applications. The bars are normalized to the Scratch configuration.
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differences (small) between StashG, ScratchGD, and StashGP primarily come from prefetching. The

results are mixed though. Applications that have scratchpad/stash accesses not right after the prefetch call

points (in the applications we studied, this behavior is seen in all but Stencil), show benefits for ScratchGD

compared to StashG: 4% reduction in execution time on average. StashGP for these applications show

4.7% reduction on average in execution compared to StashG.3 The slight improvement of StashGP over

ScratchGD is attributed to the fact that StashGP does not block the core for pending prefetch requests.

Prefetching seems to hurt Stencil. StashG performs better (though the difference is very small) compared to

both ScratchGD and StashGP configurations - <1% in cycles against both ScratchGD and StashGP .

Finally, the difference in energy consumption across the three configurations is negligible (<0.5% on aver-

age). None of the three configurations suffer from instruction count overhead. ScratchGD employs DMA

to mitigate explicit instructions and Stash and StashGP implicitly move data into the stash. As a result,

all the three configurations see the exact same instruction count for all the applications.

6.6 Summary

We evaluate the proposed stash memory organization (Chapter 5) against scratchpad and cache organiza-

tions. We use an integrated tightly-coupled CPU-GPU system for our simulations. Using four microbench-

marks, we emphasize the various benefits of stash organization that are not exploited by today’s applica-

tions. We also provide evaluations for seven larger benchmarks to study how stash performs on applications

that exist today. For the larger benchmark applications, compared to the base application (Scratch), stash

(StashG with global accesses also in stash) shows on average 10% reduction in execution time and 14%

reduction in total energy. These results show that even though these applications were not written with the

stash in mind, the stash provides substantial energy and performance benefits. Specifically, the StashG

configuration shows that the stash organization is more efficient compared to the scratchpad and the cache

organizations. Finally, we applied a DMA extension to scratchpad and compared it to a stash configuration

with prefetching. These two configurations show similar performance and energy results for the applications

studied. Stash provides other benefits compared to DMA but today’s applications are not written to exploit

these benefits.

3Note that the results reported here are against StashG and not against Scratch as we have been discussing so far.
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CHAPTER 7

RELATED WORK

In this chapter, we describe the prior work that is related to the proposals made in this thesis. First, we com-

pare our DeNovo coherence protocol against several other techniques that address one or more of the issues

targeted by DeNovo. Next, we discuss various techniques available today to verify coherence protocols.

Finally, we provide the related work for our stash memory organization.

7.1 Multicore Systems

There is a vast body of work on improving the shared-memory hierarchy, including coherence protocol

optimizations (e.g., [83, 95, 96, 115, 128]), relaxed consistency models [55, 58], using coarse-grained (mul-

tiple contiguous cache lines, also referred to as regions) cache state tracking (e.g., [35, 102, 142]), smart

spatial and temporal prefetching (e.g., [124, 137]), bulk transfers (e.g., [12, 40, 64, 66], producer-initiated

communication [3, 80]), recent work specifically for multicore hierarchies (e.g., [18, 63, 141]), and many

more. The work in this thesis is inspired by much of this literature, but our focus is on a holistic rethinking

of the cache hierarchy driven by disciplined software programming models to benefit hardware complexity,

performance, and power. Below we elaborate on work that is the most closely related.

The SARC coherence protocol [72] exploits the data-race-free programming model [7], but is based on

the conventional directory-based MESI protocol. SARC introduces “tear-off, read-only” (TRO) copies of

cache lines for self-invalidation and also uses direct cache-to-cache communication with writer prediction

to improve power and performance. Their results, like ours, prove the usefulness of disciplined software for

hardware. Unlike DeNovo, SARC does not reduce the directory storage overhead (the sharer list) or reduce

protocol complexity. Also, in SARC, all the TRO copies are invalidated at synchronization points while

in DeNovo, as shown in Section 4.5, region information and touched bits provide an effective means for

88



selective self-invalidation. Finally, SARC does not explore flexible communication granularity since it does

not have the concept of regions and also it is susceptible to false sharing. VIPS-M [118] is an extension to

SARC that exploits statically marked private or shared data to perform self-invalidations and write-through

for synchronization accesses. VIPS still does not use regions like DeNovo.

Other efforts target one or more of the cache coherence design goals at the expense of other goals.

For example, TAP [83] uses self-invalidations but introduces a much more complex protocol. Rigel [75]

does not incur complexity but requires traffic-heavy flushing of all dirty lines to the global shared cache

at the end of each phase with some assumptions about the programming model. Cohesion, an extension

to Rigel, is a hybrid memory model that switches between hardware and software coherence depending on

sharing patterns in many-core heterogeneous systems [76]. This work does not address the limitations of

either the software or the hardware protocols that it switches between. RegionScout is another compiler-

hardware coherence approach [101] that does not support remote cache hits, instead they require writes to

a shared-level cache if there is a potential inter-phase dependency. The SWEL protocol [113] and Atomic

Coherence [135] work to simplify the protocol at the expense of relying on limited interconnect substrates.

SWEL dynamically places read-write shared data in the lowest common level of shared cache and uses a bus

for invalidation. Atomic Coherence attempts to simplify the coherence protocol by separating out the races

from the protocol. The design avoids the protocol races by requiring each coherence action to be guarded

by a mutex. It uses nanophotonics for performing these mutex operations with low latency as they are now

on the critical path. As a result, Atomic Coherence eliminates transient states in the coherence protocol but

heavily relies on a specific type of on-chip network.

There has also been some work on redesigning the hardware cache coherence protocol to specifically

address their verification complexity. A recent proposal, PVCoherence [143], lists various guidelines for

designing cache coherence protocols so that they can be verified using existing automatic parametric ver-

ification techniques. The verification technique used in the paper, Simple-PV, uses an automatic tool to

generate the parametric model and then Murϕ to verify the generated model. When the proposed guidelines

were applied to the MOESI protocol to make it amenable to parametric verification (in the process also

making it even more complex), the authors noticed that the resulting protocol couldn’t be verified by Murϕ

and needed even more changes. The final protocol was verifiable but showed performance degradation (e.g.,

average 5% and up to 13.8% increase in network traffic). In Fractal Coherence [144, 136], the verification
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for arbitrary number of cores is made possible by just verifying the minimum system for correctness and

verifying that the whole system has fractal behavior. But Fractal Coherence requires addition of states and

messages to an existing cache coherence protocol (MOSI as described in [144]) to maintain fractal behavior.

Thus it enables verification of the entire system at the expense of increasing the complexity of the base

protocol. Also, a specific implementation of Fractal Coherence, TreeFractal, shows a performance degra-

dation (>10%) when compared to traditional protocols. FlatFractal [136] proposes techniques to eliminate

some of the limitations of TreeFractal, making FlatFractal’s performance comparable to the base implemen-

tation on 16 cores. But when scaled to 32 cores, FlatFractal shows up to 40% degradation in total execution

time. In contrast to the above approaches, DeNovo reduces the complexity of the cache coherence protocol

by following a hardware-software co-design approach that eliminates races, thereby reducing the overall

verification overhead.

Philosophically, the software distributed shared memory literature is also similar to DeNovo, where

the system exploits data-race-freedom to allow large granularity communication (virtual pages) without

false sharing (e.g., [6, 22, 38, 27]). These techniques mostly rely on heavyweight mechanisms like virtual

memory management, and have struggled to find an appropriate high-level programming model. Recent

work [56] reduces performance overheads through hardware support.

Some work has also abandoned cache coherence altogether [67] at the cost of significant programming

complexity.

7.2 Verification of Coherence Protocols

This section discusses several existing techniques to verify hardware coherence protocols.

Hardware coherence protocols have numerous transient states and hard-to-cover race conditions making

it very difficult to find all the bugs using just simulations or random testing. Hence, formal methods like

model checking are often employed to verify their correctness. Model checking is a technique to verify the

properties of a system by exhaustive exploration of the state space [47, 114]. McMillan and Schwalbe’s

seminal work on model checking the Encore Gigamax protocol [97] was the first to apply model checking

to verify cache coherence protocols.

Complex systems often exhibit a lot of regularity and symmetry. Ip and Dill developed Murϕ [54,

69, 105] which exploits these characteristics by grouping together similar states to verify a reduced state
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graph instead of the full one. This helps to greatly reduce the amount of time and memory used in verifi-

cation. Murϕ is a widely used tool to formally verify cache coherence protocols; e.g., Sun RMO memory

model [109], Sun S3.mp multiprocessor [110], Cray SV2 protocol [5], and Token coherence protocol [34].

We use Murϕ for our protocol verification work. Using model checking tools like Murϕ for verifying

cache coherence protocols is not new per se. We, nevertheless, do discuss some extensions to the canonical

coherence protocol modeling technique to model the guarantees provided by disciplined programming lan-

guages (namely, data-race-freedom and a disciplined parallel phase behavior). The main contribution of this

work is to provide a detailed experience of the verification process of a state-of-the-art publicly available,

mature, modern hardware coherence protocol implementation (MESI). We further compare this experience

with that of verifying a protocol driven by a hardware-software co-design approach (DeNovo), motivated by

simplifying both software and hardware through the same mechanisms (while providing opportunities for

performance and energy improvements).

Explicit state exploration model checking tools traditionally have the problem of state space explosion

limiting the scalability of such tools. As mentioned in Section 3.2, we ran out of system memory when we

increased the verification parameters. We tried a distributed model checker based on Murϕ, Preach [24]

(similar to Eddy Murphi [99]). But PReach did not help us reduce the number of states explored and hence

the memory footprint stayed the same.

There are other verification techniques that do not have the above state explosion problem and can scale

to larger systems. Parametric verification [46, 98, 106] and theorem proving [121] are two such techniques.

Several of these techniques are sometimes combined together to verify a given system. For example, the

verification of Token Coherence [34] is achieved by combining assume-guarantee reasoning and structural

induction (in addition to model checking). Even though the techniques employed were able to verify the

protocol, in practice, these techniques are either hard for non-specialists to use or error-prone because of

laborious manual intervention [143]. There have been proposals to automate parametric verification tech-

niques and minimize manual intervention [46], but such techniques impose severe limitations on the pro-

tocols that can be verified. DeNovo, in contrast, is a simpler protocol and makes it feasible to verify with

easy to use verification techniques, such as an explicit state model checker. A general survey of various

techniques used to verify cache coherence protocols can be found in [111].
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7.3 Heterogeneous Systems

7.3.1 Heterogeneous Architectures

There have been numerous tightly coupled heterogeneous system designs in academia and industry. Hecht-

man and Sorin recently explored the performance benefits of tightly coupled, cache coherent, shared virtual

memory heterogeneous systems and found that tightly coupled architectures offer significant potential ben-

efits compared to loosely coupled architectures [65]. HSC [112] uses a region-coherence scheme across

CPUs and GPUs to reduce the overhead of providing coherence in integrated CPU-GPU systems.

The AMD-led Heterogeneous System Architecture (HSA) consortium defines an integrating CPU+GPU

architecture to enable fast, efficient heterogeneous computing [82]. Data is managed using a single, coherent

shared memory with unified addressing. AMD’s Fusion [32] and Intel’s Haswell [68] architectures are

integrated CPU-GPU processors that support “zero-copy”/“InstantAccess” data transfers between CPU and

GPU, to allow the CPU and GPU to access each others memory without explicit copies.

Intel’s MIC architecture is a more tightly-integrated CPU-GPU heterogeneous system with a single

shared memory model [119]. MIC requires program annotations and compiler support to determine which

variables will be shared for enabling an efficient coherence protocol.

NVIDIA’s Project Echelon integrates CPUs (latency-optimized cores, or LOCs) with GPUs (throughput-

oriented cores, or TOCs) together into a tiled architecture with a unified memory hierarchy [73].

Other heterogeneous systems with a fully unified address space are AMD’s Berlin processor [117],

ARM’s Mali and Cortex cores [126], and NVIDIA’s Project Denver [53].

The above architectures are all similar to our baseline architecture (a tightly coupled, coherent memory

hierarchy with a unified address space but do not distribute their cores on the network). However, the main

contribution of our work is making scratchpads globally visible, which is not supported in any of these

designs. Moreover, stashes support more fine-grain (chunk-level), and dynamic, choices between coherent

caching and private data, than any previous designs.

Runnemede is a heterogeneous Exascale architecture for extreme energy efficiency [37]. It contains

a mixture of large cores (CEs) that are latency-oriented, and smaller custom architectures (XEs). Each

core has a scratchpad and an incoherent cache, both of which must be managed by the programmer. Like

Runnemede, Pangaea uses software to manage a tightly integrated CPU-GPU system [138]. In our work
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we use a hardware-software co-designed protocol, while Runnemede and Pangaea rely on pure software

coherence.

The Cell B.E. processor is composed of a single master CPU (PPE) and multiple accelerators (SPEs) [116].

But the Cell’s memory system is loosely coupled and requires explicit data movement between PPE and

SPEs.

7.3.2 Improving Private Memories

In this section we discuss the much prior work aimed at improving the private memories for CPUs and

GPUs. Table 7.1 summarizes the most closely related work to stash on the basis of the benefits in Table 5.1.

Bypassing L1: (MUBUF [10])):

L1 bypass does not pollute the L1 when transferring data between global memory and the scratchpad, but

does not offer any other benefits of the stash. One such example is the MUBUF instruction [10] introduced

recently by AMD.

Change Data Layout: (Impulse [36], Dymaxion [42]):

By compacting data that will be accessed together, this technique provides an advantage over con-

ventional caches, but does not explicitly provide other benefits of scratchpads. For example, the Impulse

memory controller [36] exploits application specific information to remap memory to shadow virtual and

physical addresses providing data compaction in caches and reducing network wastage. A system with

Impulse still has other problems with caches such as TLB access, tag comparisons, and conflict misses.

Elide Tag: (TLC [120], TCE [145]):

This technique optimizes conventional caches by removing the need for tag accesses (and TLB accesses

for TCE) on hits. Thus, this technique provides some of the benefits scratchpads provide in addition to the

benefits of caches. However, it relies on high cache hit rates (which are not common for GPUs) and does

not remove conflict misses or provide compact storage of the stash.

Virtual Private Memories (VLS [50], Hybrid Cache [48], BiN [49], Accelerator Store [91]):

Virtual private memories provide many of the benefits of scratchpads and caches. Like scratchpads,

they do not require address translation in HW and do not have conflict misses; like a cache, they also reuse

data across kernels while avoiding polluting other memories. However, they requires tag checks and incur

explicit data movement which prevents lazily writing back data to the global address space. Furthermore,
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virtual private memories do not support on-demand loads. For example, VLS does on-demand accesses after

thread migration on a context switch, but the initial loads into the virtual private store is through DMA.

DMAs: (CudaDMA [19], D2MA [70]):

A non-blocking DMA technique with stride information applied to scratchpad provides two of the ben-

efits of stash, i.e., instruction count reduction for explicit data movement and zero pollution of the L1 cache.

D2MA [70] is one such example application of DMA to scratchpad. However, as discussed earlier, such

a DMA technique does not provide the benefits of on-demand loads (beneficial with control divergence),

lazy writebacks, and reuse across kernels. Finally, a non-blocking DMA scheme as applied in D2MA needs

additional checks for consistency, potentially for every load to the scratchpad (e.g., a program where some

DMA is always happening), resulting in energy overheads.

Overall, while each of the above techniques provides some of the same benefits as the stash, the key

difference is that none of them provide all of the above benefits.

7.3.3 Other Related Work

TAP [84] and Staged Memory Scheduling (SMS) [13] look at how to share data between cores on inte-

grated CPU-GPUs. TAP modifies the cache management policy to study its affect on the performance of

a GPU application, while SMS modifies the behavior of an integrated CPU-GPUs memory controller to

improve system performance and fairness. Both of these projects differ from our work because they focus

on scheduling and management policies, while our work focuses on the storage organization unit itself.

Gebhart et al. unify all of the local SRAM blocks in a GPU SM (cache, scratchpad, and register file) [57].

This enables them to dynamically partition the SRAM according to a given application’s need and improve

performance and energy consumption. While they do not focus on the inefficiencies of the storage organi-

zation, we can leverage their techniques in our work.

Singh et al. recently implemented a coherence mechanism for standalone GPUs using a time-based

coherence framework that relies on globally synchronized counters to determine when a core is allowed to

access a given cache line [122]. Compared to conventional protocols, this reduces overheads significantly

by removing invalidations and other coherence transitions such as data races. Our stash functionality is

independent of the coherence protocol applied. So we can leverage Singh et al.’s coherence mechanism

too. However, our work provides coherence for tightly-coupled, integrated CPU-GPU systems instead of
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standalone GPUs. Additionally, it does not require global synchronization counters to enforce coherence.

Scratchpads vs. Caches:

Chao et al. recently compared the performance of GPU scratchpad and cache implementations [87] and

found that using the scratchpad can significantly improve performance and energy efficiency. The tradeoffs

they identify are identical to those that we point out in Section 5.1, however we also introduce a new memory

organization, stash, that combines the advantages of caches and scratchpads.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Energy efficiency has become extremely important in designing future computer systems. One of the key

consumers of today’s on-chip energy is the memory hierarchy. Memory hierarchies in today’s systems suffer

from several inefficiencies. Many of these inefficiencies are a result of today’s software oblivious hardware

design. So in this thesis, we focus on three sources of these inefficiencies. We explore information available

in the software and propose solutions to mitigate these inefficiencies. Next, we briefly introduce the three

inefficiencies and summarize our proposals to address them.

1. Coherence: Today’s directory based hardware coherence protocols are extremely complex with sub-

tle races and transient states. They also incur overheads in storage for maintaining sharer lists and

network traffic for sending invalidation and acknowledgement messages. We propose DeNovo for a

class of programs that are deterministic. DeNovo assumes a disciplined programming environment

where programs have a structured parallel control; are data-race free and deterministic; and provide

information on what data is accessed when. The data-race-freedom guarantee from the software helps

eliminate the subtle races and hence the transient states in the coherence protocol. The structure par-

allel control and the data access information enables DeNovo to employ self-invalidations instead of

hardware triggered invalidations messages. As a result, DeNovo is a much simpler protocol (has 15X

fewer reachable states compared to that of a state-of-the-art implementation of the MESI protocol

when modeled on a model checker.) and incurs no directory storage overhead, no invalidation traffic

and no false sharing.

2. Communication: The next source of inefficiencies is related to how data is communicated in the
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system. Specifically, we focus on the on-chip network traffic originating from and destined to the L1

cache. We add two optimizations to DeNovo to address these inefficiencies. The first optimization is

‘Direct cache-to-cache transfer’, where data in the remote cache can be sent to the requestor without

an indirection to the directory. The second optimization is aimed at reducing the wastage of network

traffic destined to the L1 cache. In this optimization, we exploit the software information to smartly

transfer the relevant useful data instead of always transferring fixed cache lines. We implemented

these optimizations as extensions to the DeNovo protocol. We show that these optimizations did not

require any new states (or transient states) in the protocol showing the extensibility of the DeNovo

protocol. Including the two communication optimizations, DeNovo reduces the memory stall time by

32% and overall network traffic by 36% on average compared to a state-of-the-art implementation of

MESI.

3. Storage: There are several organization units to store on-chip data. Caches and scratchpads are two of

the popular ones. These two organization units have their own advantages and disadvantages. Caches

are transparent to the programmer and are easy to use. But they are power-inefficient. Scratchpads

provide compact data storage and predictable data accesses. But their lack of global visibility results

in several overheads. We propose stash, a new memory organization unit that has the best of the both

caches and scratchpads. But stash is futuristic. Today’s applications are very much tailored towards

how scratchpads or caches are used today. Even though we see benefits on having a stash instead of a

scratchpad in today’s GPU applications, these applications could be written differently (e.g., exploit

reuse across kernels) to exploit the benefits of stash that a scratchpad or a cache does not provide on

their own. So we also emphasize the benefits of stash using four microbenchmarks. Compared to a

baseline configuration that has both scratchpad and cache accesses, we show that the stash configu-

ration, in which scratchpad and cache accesses are converted to stash accesses, reduces the execution

time by 10% and the energy consumption by 14% on average for the applications studied.

8.2 Future Work

Next, we describe some of the future directions for the work presented in this thesis.
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8.2.1 Coherence

Beyond Deterministic Codes:

Chapter 2 describes a simple hardware-software co-designed protocol that addresses many of the inef-

ficiencies with today’s hardware based, software agnostic directory coherence protocols. We first start off

with applying this simple and extendable protocol to multicore systems. We later show in Chapter 5 that it

fits perfectly well with heterogeneous systems and can also support innovative memory organizations such

as stash. But so far we have focused only on deterministic codes. There has been work on extending the

DeNovo protocol with simple extensions with no additional overhead to the protocol itself to support disci-

plined non-determinism [130]. There is also ongoing work [129] in our research group aimed at supporting

arbitrary synchronization patterns. All of this work is focused on multicore systems. Moving forward, we

would like to explore these extensions to DeNovo and extend it to heterogeneous systems along with the

stash memory organization to efficiently support non-determinism on heterogeneous systems.

8.2.2 Network Traffic

The two network traffic optimizations discussed in Section 2.6 focus on the two different categories of data

(used and unused) but are focused only on the traffic destined to L1. There are several inefficiencies with

the rest of the on-chip and off-chip traffic too. Below we discuss future work in this space.

Towards efficient on-chip network traffic - going beyond L1:

To remove further inefficiencies from the on-chip traffic, we need to focus on the network traffic origi-

nating from and destined to the last level cache (LLC) or the L2. Some of the sources of inefficiencies of L2

network traffic are: sending the entire cache line as part of a writeback even though only a part of the line

is modified, sending cache lines to L2 that are read only once by the program (e.g., streaming data), request

messages to L2 when it is known for sure that L2 wouldn’t have the data, and so on. There has been work

in this space in our research group which focused on network traffic inefficiencies at L2 which extended the

DeNovo protocol discussed in Chapter 2 [123]. The focus of this work was primarily on multicore systems.

Now that we have explored inefficiencies in heterogeneous systems with different memory organizations,

we would like to explore the applicability of these optimizations on heterogeneous systems. Moreover, het-

erogeneous systems open up more opportunities to reduce network traffic inefficiencies. For example, most

of the GPU applications divide the data into many chunks and a group of threads (a threadblock) work on
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each chunk of data. Let’s say that this chunk of data is brought into the local scratchpad (or a stash) for

performing the computation. Depending on the nature of the given application, it is most likely that this

chunk of data needs to be written back to L2 to make space for the next threadblock’s chunk of data. So

performing DeNovo’s “cache line” level registration requests is unnecessary. These registration requests can

as well be fused with the writeback message to the L2. Even better, if the total data size the application is

going to work on far exceeds the space in L2, the writeback can even bypass L2 all the way to the memory.

Efficient off-chip network traffic:

Traditionally, the data transfer between the memory controller and the DRAM is at a fixed cache-line

granularity. The same problems a fixed transfer granularity causes on-chip are caused off-chip too. If the

on-chip memory hierarchy doesn’t need some of the parts of the cache line then transferring that data from

and to DRAM is a clear waste of energy. The DRAM could rather send some other data that is useful for

the application. We need to explore different DRAM organizations (e.g. emerging research on die-stacked

memory [89]) to enable fine-grained data transfer from and to DRAM.

8.2.3 Storage

Stash at the L1 level for CPUs:

In this thesis, we primarily focused on addressing storage inefficiencies in the context of heterogeneous

systems. In the future, we would like to explore the possibility of a stash memory organization for CPUs. We

envision that the hardware support would be similar to that of what we proposed for GPUs. The challenge

will be in the software interface as today’s CPUs do not use any directly addressable memory unit and in

effectively mapping chunks of global data to stash.

Stash as a Replacement for Last Level Caches:

Other work from the DeNovo project classifies on-chip waste and focuses on its implications on network

traffic [123]. This work did not focus on the storage implications of on-chip waste. The stash memory

organization proposed in Chapter 5 is a first step towards addressing this concern. Our focus has primarily

been on the core’s private memory (e.g., scratchpad or L1 cache). The last level cache too has similar

inefficiencies related to data storage. We would like to extend the waste analysis proposed in [123] to

heterogeneous systems and quantify the amount of on-chip storage waste, especially at the last level cache.

We would like to use these findings to motivate using a stash organization in addition to the last level cache.
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Going Beyond Scratchpads and Caches:

Caches and scratchpads are two of the widely used memory organizations in today’s memory hierarchies.

In this thesis, we have looked at several inefficiencies with caches and scratchpads related to coherence, stor-

age, and communication. But there are other memory organizations that could have other inefficiencies too,

such as stream buffers. We would like to explore the inefficiencies with the other memory organizations and

study how we can use stash and exploit its strengths to provide a unifying baseline organization. Specifically,

we would like to explore the theme that is common across all the work of this thesis - exploit information

from the software to mitigate the inefficiencies in the hardware.
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