
Impact of Software Approximations on the Resiliency of a
Video Summarization System

Radha Venkatagiri† Karthik Swaminathan‡ Chung-Ching Lin‡ Liang Wang¶

Alper Buyuktosunoglu‡ Pradip Bose‡ Sarita Adve†
†University of Illinois at Urbana-Champaign ‡IBM Research ¶University of Virginia

†{venktgr2, sadve}@illinois.edu ‡{kvswamin, cclin, alperb, pbose}@us.ibm.com ¶lw2aw@virginia.edu

Abstract— In this work, we examine the resiliency of a state-
of-the-art end-to-end video summarization (VS) application that
serves as a representative emerging workload in the domain
of real time edge computing. The VS application constitutes
key video and image analytic elements that are processed by
embedded systems aboard unmanned aerial vehicles (UAVs).

Real-time performance and energy constraints motivate the
consideration of approximations to the VS algorithm. However,
mission-critical UAV applications also demand stringent levels
of resilience to soft errors that are exacerbated with higher
altitude. In this work, we study the effects of three different
types of software approximations on the application level re-
siliency (to soft errors) of the VS algorithm. We show that our
approximations yield significant energy savings (up to 68%),
with commensurate improvement in performance, without a
degradation in the application resilience. Further, by proposing
a novel quality metric (appropriate for the UAV vision analytics
domain) for the summarized video output, we show that even
though the rate of Silent Data Corruptions (SDCs) increases
slightly (<2%), the impact of these SDCs on output quality is
limited. Thus, we conclude that software approximation can be
utilized to achieve significant gains in performance and energy
without affecting application resiliency.

I. INTRODUCTION

Real time edge computing [1], [2] is a rapidly growing field
where real time data processing and other compute services are
pushed away from centralized points to the logical extremes or
edge of a network. This reduces the communication bandwidth
needed between edge devices (e.g., sensors) and the central
data center by performing analytics and knowledge generation
at or near the source of the data. One of the key enablers of
this trend is the presence of simultaneously high-performance
and energy-efficient embedded systems that can be used to
do computing in devices that are at the edge of the network.
Real time edge computing has many applications which are
both military and civilian in nature, such as Unmanned Aerial
Vehicles (UAV), connected cars, industrial robotics, etc.

Figure 1 illustrates a real-life application of edge computing.
Here, a swarm of UAVs, supported by a terrestrial server at the
back-end, carry out tasks such as surveillance of hostile targets

This work was supported in part by the Defense Advanced Research
Projects Agency (DARPA), by the National Science Foundation under Grant
CCF-1320941, by the Center for Future Architectures Research (C-FAR)
and the Applications Driving Architectures (ADA) center, one of six centers
of JUMP, a Semiconductor Research Corporation program co-sponsored
by DARPA. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the
U.S. Government. This paper is: Approved for Public Release, Distribution
Unlimited.

Fig. 1: Co-operative swarm of UAVs engaging in computation for
real-time applications.

or rescue and recovery in the event of natural disasters. The
UAVs communicate data and other analytics with the ground
servers through wireless connections whose bandwidth, se-
curity and reliability might vary depending on physical and
environmental factors. Hence, for real-time critical tasks, it is
increasingly becoming essential that each UAV be equipped
as a highly efficient mobile embedded system that can locally
perform essential real-time computing tasks. One such task
that is often performed locally aboard the UAV is Video
Summarization [3]. This task involves extracting concrete
context from the input video stream – captured by the many
cameras on the moving UAV surveying a wide area – and
summarizing it, usually in the form of a panoramic image. The
panoramic image can then be transfered to a central ground
server for further processing, for say, tracking or identifying
rescue targets.

Edge computing platforms, such as that described above, are
often deployed in rugged terrains with harsh environmental
conditions and must satisfy the following requirements: a)
ensure high performance to meet real time deadlines, particu-
larly for mission-critical applications, b) be energy efficient
to enable long range computing, and c) be resilient while
operating in harsh environments subject to sharp variations
in temperature, altitude and weather conditions, and tolerate
glitches in input and output [4].

Approximate Computing [5], [6] is increasingly gaining
traction as a viable approach for high performance and energy

1

efficiency. Approximate computing environments allow delib-
erate, but controlled, relaxation of correctness and trade-off
computational accuracy for improvements in performance and
energy. Many edge computing applications involve processing
sensory signals (image, audio, etc.) which can inherently
tolerate inaccuracies in data and/or computation without com-
promising overall mission targets and goals. This presents
an opportunity to redesign these algorithms to incorporate
approximate computing with the goal of meeting stringent
performance and energy targets (requirements (a) and (b) from
above) under specified constraints.

However, while most approximate computing techniques
have in-built metrics and techniques to guarantee a certain
output quality, it is not clear how they work in the face of
sources of vulnerability in the processor, such as soft errors,
voltage noise and aging phenomena. Further, these effects
can be exacerbated (increased probability of radiation strikes
at high altitudes in UAVs) when the approximate computing
paradigm is adapted to the harsh conditions that these systems
encounter during their operation. For successful deployment in
edge computing environments, it is critical to ensure that the
application of approximate computing techniques which yield
performance and energy improvements not degrade the overall
system resiliency (requirement (c) from above).

This work focuses on studying the interaction between
software approximation and the application’s resiliency to
soft errors (henceforth referred to as application resiliency or
simply resiliency) and to our knowledge is the first work to
do so. To demonstrate this interaction we analyze a state-of-
the-art end-to-end video summarization application [3] which
represents a typical and key vision analytics workflow exe-
cuted by embedded systems on-board UAVs.

In particular, we make the following contributions:
• We study the application resiliency of an end-to-end video

summarization application (henceforth termed as VS for
brevity) that serves as a representative workload for on-
board UAV processing. Specifically, we study the ap-
plication’s resilience to radiation-induced soft (transient)
errors, by performing runtime architectural fault injection
experiments. We perform all our analyses across two
distinct inputs that realistically portray the different types
of input video stream captured by cameras on the UAV.

• Performing resiliency analysis on a full, long-running
end-to-end workflow is more expensive (in time and
compute) than analyzing individual smaller kernels that
together constitute the larger work-flow. We examine
this trade-off by estimating the resiliency of individual
representative kernels or hot functions in the VS appli-
cation. We show that the hot functions are sub-optimal
at capturing the behavior of the full application, thus
motivating the need to develop and evaluate realistic
applications with a full end-to-end workflow.

• We characterize the performance and energy of three
different software approximation techniques applied to
the VS algorithm. We show that the approximations
yield significant speedup and energy savings (up to 68%)

without compromising the quality of the panoramic image
output.

• We examine the resiliency of approximate VS algorithms.
We find that the approximations yield similar resiliency
profiles to the baseline (precise) algorithm and in the
worst case lead to a slight increase in Silent Data
Corruption (SDC) rates (up to 2%). To the best of our
knowledge, this is the first work that examines the effect
of software approximations on application resiliency.

• We further examine the SDCs caused by the approximate
algorithms using a novel quality metric suitable to the
domain of UAV image analytics. We show that most
of the SDCs generated by the applied approximations
have small quality degradations and can potentially be
tolerated by the application.

In summary, we show that software approximation can be
utilized to achieve significant gains in performance and energy
without affecting application resiliency. This work does not
claim to cover all possible types of approximations (or even
the best ones) or comment on the general resilience of different
techniques. Instead, the intent of the paper is to encourage
a comprehensive evaluation (performance, power, resilience)
of system optimizations and show that highly effective and
resiliency-aware software approximations are possible. While
we study a particular domain and report those results, the idea
of holistically measuring system resiliency across different
approximation knobs is generally applicable.

II. BACKGROUND

A. Video Summarization

UAVs are increasingly being used to perform tasks such
as surveillance of hostile targets and rescue and recovery in
the event of natural disasters. For decisive action in all these
scenarios, it is essential to first extract and summarize the
concrete context from the input video stream captured by the
moving UAV. This operation is termed as Video Summariza-
tion. A sophisticated video summarization work-flow requires
application of several Computer Vision techniques.

One such example of an end-to-end application flow is
described in Viguier et al. [3], where the UAV multimedia
processing pipeline focuses on summarizing videos captured
by the camera on-board the UAV. The framework for achieving
this is shown in Figure 2. In order to achieve large data
reduction without significant loss of events of interest, two
types of summarizations are included: coverage and event
summarization. Coverage summarization involves a complete
panorama generation which describes the entire video with a
single image that represents the entire spatial coverage area
of the camera. The coverage summarization relies on spatially
relating different video frames from the cameras, projecting
them into a common view space, and stitching them together
to build a single panorama. Event summarization comprises
of tasks such as detection, recognition and tracking of mov-
ing objects such as vehicles and pedestrians. Finally, both
intermediate results are integrated by overlaying the tracks (of

2

Fig. 2: Video summarization for UAV videos.

moving objects) on the panorama to create a comprehensive
and concise summarization of a whole UAV video.

In this paper, we focus on coverage summarization. In
particular, we focus on algorithms that perform the task of
generating video panoramas of the landscape covered by
the cameras on a UAV and on energy-efficient and reliable
implementations of the same.

B. Approximate Computing

Approximate computing is a fast growing trend that allows
controlled relaxation of correctness for better performance and
energy. Users in these systems are typically willing to tradeoff
some inaccuracies in the program output for other system
benefits. Many techniques have been proposed that leverage
approximate computing at the software [7], [8], [9], [10], [11],
[12], programming language [13], [14], [15], [16], [17], [18],
[19] and hardware [20], [21], [5], [22], [23], [24] level for
improved performance, energy or reliability. Since we measure
application level resilience in this work, we focus our analysis
to software approximations. In particular, we study three broad
classes of software approximations.

(1) Input sampling: In this class of approximation, com-
putation is only performed over a subset of the input. This
class of approximation is especially popular in big data analyt-
ics [25] where the amount of data over which the computation
needs to be performed is prohibitive in time and resources.

(2) Selective Computation: Another popular class of ap-
proximations are those in which only a fraction of the work
is performed compared to the precise program. While the un-
derlying algorithm remains unchanged, selective computations
are simply skipped or dropped [7].

(3) Algorithmic Transformation: These approximations
transform the code and replace precise but expensive com-
putation with cheap but imprecise computation.

The selection of which approximations to apply depends on
the application/domain and the end goal. For example, approx-
imations skipping certain loop iterations [7] and approxima-
tions dropping some synchronizations [9] in the program both
belong to the broad category of selective computation and ei-
ther, both or neither might be an appropriate approximation for
a given application. In Section III we describe approximations
belonging to each of the categories described above that are
specific to the application we study.

III. VIDEO SUMMARIZATION ALGORITHM

As described in Section I, the system architecture of interest
in this work is a model where a swarm of UAVs is engaged

Key	
 point	
 detec,on	
 and	
 matching	
 between	
 adjacent	
 frames	

Find	
 Homography	
 parameter	
 using	
 RANSAC	

Solu,on?	
 Find	
 Affine	
 parameter	
 using	
 RANSAC	

Calculate	
 size	
 of	
 panorama	
 and	
 global	
 transforma,on	
 for	
 each	
 frame	

Finish	
 itera,on	

Update	
 panorama	
 frame	
 by	
 frame	

Yes	

No	

Yes	

No	

Determine	
 video	
 segments	
 for	
 crea,ng	
 separated	
 panorama	
 	
 	

Fig. 3: Flowchart describing the key tasks that comprise the Video
Summarization Algorithm.

in image scanning, analysis and stitching with the end goal of
creating a global panorama of the observed landscape. Towards
this goal, we describe in this section a video (image) stitching
algorithm that we have developed and implemented in our
experimental evaluation platforms. Our application (hence-
forth referred to as the Video Summarization (VS) algorithm)
takes input videos captured by moving cameras and generates
panoramas that provide a global view of the landscape. Since
the input video is a concatenation of images captured by
(various) moving cameras, it can contain various segments
with dissimilar viewing angles and settings. Each of these
segments are summarized by mini-panoramas and are stitched
into a global panorama (simply referred to as panorama) at
a later stage. In this paper, our analysis is restricted to the
generation of a panorama from video captured by a single
camera on-board a single UAV.

A. Functional Overview

While a full detailed description of the algorithm is pro-
vided in [26], for the sake of brevity, we describe the key
capabilities of the algorithm [27] in the following paragraphs.
A representative flow of the algorithm is shown in Figure 3.

One of the fundamental functions performed by the VS
algorithm is the comparison, transformation and stitching of
two images from the input video. The algorithm first identifies
key regions of interest (key points) within each image and then
looks for matching key points within the images to identify
potential common areas. It then applies transformations to the
two images so that they are aligned correctly and have the
same scale, lighting, perspective etc., before proceeding to
stitch them together. Figure 4 shows this process using two
sample images. We utilize FAST (Features from Accelerated
Segment Test) detectors [28], [29] and ORB (Oriented FAST
and Rotated BRIEF) descriptors [30] to achieve efficient
and accurate feature point detection and matching. RANSAC
(RANdom SAmple Consensus) [31] is used to compute the
homography transformation between the two images.

3

Fig. 4: Simple example of stitching two images.

Using the technique described above, successive frames
of the input are pair-wise compared in the initial pass of
the algorithm. However, not every pair of adjacent frames
has enough matching key points to compute the homography
transformation. In this case, we estimate a simpler affine trans-
formation which requires fewer matching points. If sufficient
number of matching points cannot be found even for the
affine transformation, the corresponding frame is discarded.
To generate the overall output panorama we align every frame
to the first by transforming all the frames to have the same
coordinate system as the first frame by using the homography
transformations described above.

There are various other sophisticated elements of the stitch-
ing algorithm that are used to improve the rendered quality of
the output panorama. The mathematical details of the trans-
formations and corrective actions (e.g., to avoid blurs and
distortions) are omitted here for brevity. Depending on the
quality and number of the input video clips (collected by the
moving cameras), the amount of computation performed by
the video summarization procedure can vary.

B. Inputs to the Video Summarization Algorithm

We evaluate the VS application using two aerial videos from
the VIRAT (Video and Image Retrieval and Analysis Tool)
dataset [32] – 09152008flight2tape1 2 (hereby referred to as
Input 1) and 09152008flight2tape2 4 (hereby referred to as
Input 2). We use an input size of 1000 frames for both inputs.

The VIRAT dataset was chosen for our evaluations to
represent realistic scenarios of videos captured during aerial
surveillance with variations in resolution, diversity in scenes,
changes in scale, focus and camera angles. The two inputs
that we profiled vary significantly in these aspects as well as
in the nature with which these parameters vary in the video
stream. For instance, the number of changes that occur in
Input 1 are much higher than Input 2, leading to a much
larger number of mini-panoramas generated in the first input
set. These videos were sampled at periodic intervals to yield
around 3000 frames across the duration of the entire video. In
addition, we further downsampled the video by a factor of 3
to enable a statistically significant number of error injection
experiments to run within a reasonable amount of time without
perceivable loss in information or image quality.

IV. APPROXIMATE VIDEO SUMMARIZATION ALGORITHMS

As described in Section III, the Video Summarization (VS)
application is capable of effectively capturing several hours
of video in single stitched image frames. However, given the
constraints on power efficiency (of the on-board device) as
well as real-time requirements of the mission, a complete and
exact implementation of the algorithm may not be possible.
In [4] and [33], the authors examine techniques to mitigate
this limitation by dynamic adjustments of the link bandwidth
and processor voltage/frequency.

In this paper, we consider software approximation, to the
VS algorithm, as a means to realize performance and energy
targets. Since computations involving images can be inherently
tolerant to inaccuracies in data and/or compute, approxima-
tions to the the VS workflow have the potential to yield
significant benefits without unduly compromising the quality
of the final panorama image output. We study three different
approximations (belonging to the three broad classes described
in Section II-B and presented in the same order). The details
of the approximate algorithms are described below:

(1) Random Frame Dropping (VS RFD): In this algo-
rithm, we randomly drop frames from the input stream. Apart
from improving the effective frame rate, this input approxi-
mation aims to leverage redundancies in consecutive images
captured by a moving camera without substantial degradation
in output image quality. In this paper, we demonstrate results
with up to 10% of the input frames being dropped.

(2) Key Point Down Sampling (VS KDS): The VS al-
gorithm described in Section III involves the computation of
feature (key) points and attempts to match them across frames
in order to be able to stitch the frames together. We propose
an approximation in which we only perform matching on
a fraction (one-third) of the key points as compared to the
precise algorithm. This significantly reduces the computation
time, which varies as O(n2) with the number of key points. In
this algorithm, the source of error could be due to some frames
being dropped on account of having insufficient matching key
points. In such cases, it is hoped that the redundancy of the
image will still enable us to obtain complete coverage of the
input video in our summarized output.

(3) Simple Matching (VS SM): In the default algorithm,
each key point in the current frame is compared with all key
points in the incoming frame and the two nearest neighbors
are determined for each key point. The key point is included
in the list of good matches only if the ratio of the distance
between the nearest and 2nd nearest neighbor is above a certain
threshold; i.e., the nearest match is sufficiently closer than the
2nd nearest. This reduces the probability of a false positive,
i.e., the probability that the key point in a frame incorrectly
maps to a point in the subsequent frame, even if, in reality,
there is no matching object. In case of VS SM, we alter the
algorithm to determine only the single nearest neighbor for
each key point. In addition, we place an upper bound on the
actual distance value and consider only those matches whose
nearest neighbor is within a fixed distance of the key point.

4

Hence, only those key points in the incoming frame which
match almost perfectly with those in the original frame would
be considered. Note that this technique still leaves room for
some errors, for example, when there are two identical objects
in the image. In such cases, both nearest neighbor distances
could fall within the threshold and the mapping could happen
to the incorrect object.

A. Effectiveness of the Approximate Implementations

An approximate algorithm has to produce acceptable quality
outputs while enabling some system benefit (e.g. improved
performance or energy efficiency). Hence, we examine the
three approximate algorithms from the point of view of both
system benefits and output quality to determine if they are
good candidates for further study.

System benefits of approximation: We carried out an ex-
perimental evaluation of these algorithms on an IBM POWER-
based server class machine. Figure 5 shows the Instructions
Per Cycle (IPC), execution time and energy, normalized to
the baseline VS algorithm. We observe that VS RFD provides
the maximum reduction in execution time (68%) for Input
1 by just dropping 10% of the total frames. On the other
hand, VS KDS yields the highest performance improvement
of 18% in case of Input 2. Since the IPC (and hence, the
power) remains relatively constant across the default and
approximate implementations, the energy profile across the
exact and approximate implementations varies similarly to that
of the execution time.

0

0.2

0.4

0.6

0.8

1

1.2

VS VS_RFD VS_KDS VS_SM VS VS_RFD VS_KDS VS_SM

Norm. IPC Norm exec time Norm energy

INPUT 1 INPUT 2

Fig. 5: Comparison of IPC, execution time and energy of the proposed
approximate algorithms (VS RFD, VS KDS, VS SM) for Input 1
and Input 2, with the values normalized to the corresponding baseline
(VS) for each respective input.

Comparison of output quality: Figure 6 compares the
output images generated by the baseline VS algorithm and
the three approximations described for the two inputs. Visual
inspection shows that the approximate algorithms generate
output images of acceptable quality. Even in the approximate
output image with the worst quality (VS RFD for Input 1),
the quality degradation is due to image perspective and all the
pertinent information in the final panorama is retained.

Tradeoffs between performance and output quality:
The difference between the two inputs is evident from the
tradeoffs between performance and output image quality for
each approximation. For instance, a visual inspection of the
output panoramas generated by the baseline VS algorithm and
the three approximations (Figure 6) show that Input 2 is more
robust to the proposed approximation techniques as compared
to Input 1. On the other hand, the performance benefits due
to approximation are clearly greater in case of Input 1.

This difference in the impact of approximation on the two
inputs can be attributed to the fact that the variation between
consecutive frames is much more pronounced in Input 1 than
in Input 2. The execution time improvement is primarily due
to the polynomial complexity of the algorithm in terms of
number of frames that are processed. In addition to the frames
dropped by the approximate implementation, the algorithm
also discards additional frames without stitching them to the
overall panorama, when sufficient matching points are not
found. Consequently, the proposed approximation techniques
result in several frames of Input 1 being discarded. While
this reduces the number of computations, resulting in greater
performance and energy benefits as compared to Input 2, it
also adversely affects the output quality to a greater extent. The
differences between the output images can be further analyzed
quantitatively by means of our proposed metric, described in
further detail in Section V-D.

Fig. 6: Comparison of the output panoramas obtained from baseline
VS algorithm (a) and various approximation techniques (b,c,d) for
the two input image sets.

V. METHODOLOGY

In this section we describe the design methodology and
the evaluation environment used to measure the resiliency
of the VS algorithm as well as its approximate versions. In
section V-C we describe a small case-study to understand
the trade-offs of performing resiliency analysis on a full end-
to-end application (such as the VS algorithm) vs. constituent
small kernels. In section V-D, we define a metric to calculate
the quality of the corrupted output produced by the application
when perturbed by errors. We later use this metric to analyze
the quality of the corrupted outputs produced by the approxi-
mate VS algorithms.

5

A. Measuring Resiliency of Video Summarization Algorithm

Error injection is a widely used error analysis technique
where an error is injected (typically one at a time) in a real
or simulated machine and the outcome (impact of the error) is
studied [34], [35], [36], [37], [38], [39]. Our goal is to evaluate
the application-level resiliency of the VS algorithm and its
different approximate versions in the presence of hardware
transient errors. The error model studied in this work assumes
the occurrence of single bit errors in the architectural register
file. The impact of an error on a program can be described by
the following four outcomes:

(1) Mask: The error is masked by consecutive execution
such that the application produces the correct output. This can
happen if the error affects dead state or if the corrupted state
is overwritten before being used.

(2) Crash: The error catastrophically affects the program
state and results in the program crashing. For example, an
error that leads to an out of bounds memory access.

(3) Silent Data Corruption (SDC): The error propagates
through the program execution and corrupts the output. This
is called a Silent Data Corruption because there is no obvious
symptom of the error till the execution completes and the
output is found to be corrupted.

(4) Hang: The error corrupts the internal state of the
program such that neither completes nor crashes but hangs.

Comprehensively injecting errors in each potential error site
in the program execution is prohibitively time consuming. For
instance, in our study, each bit in every architectural register
at every single execution cycle is a potential candidate for
error injection. For most applications, the number of error
sites is prohibitively large. Hence, we rely on statistical error
injection in randomly selected error sites in the execution.
This technique provides statistical summaries of the impact
of errors on the application by estimating average rates for
Mask, Crash, SDC and Hangs. Alternate, more comprehensive
and higher precision techniques such as Relyzer [40] could be
applied but are left to future work.

For accurately estimating the application resiliency, it is
essential to perform error injections in a significant number
of error sites that are uniformly distributed over the program
execution. We use the term error-site coverage (or simply
coverage) to indicate the relative robustness in the number
and distribution of error sites picked for error injections.

We estimate the minimum number of error injection ex-
periments needed to get an adequate statistical sample by
observing the different rates of Mask, Crash, SDC and Hang
over many error injections and the point at which these
rates stabilize. In other words, the minimum number of error
injections required are at the knee of the trend curves for the
Mask, Crash, SDC and Hang rates. Beyond the knee of the
curves, increasing the number of error injections should only
change the outcome rates trivially.

B. Error Injection Environment

Error injection experiments are conducted on the IBM
POWER-based machine, running Linux RHEL 6.5 operating

Application
Application

Derating

User input parameters: injection
configuration, result checking, etc.

Hardware

 AFI

Read architected
state

Modify and write
new faulty state

 Fault Injector

State Detection
(Hang or Crash)

Result Checking
(SDC or Masked)

Fault Monitor

Fig. 7: Overview of the Application Fault Injection framework.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Functional Components of VS Application

%
of

 Ex
ec

ut
io

n T
im

e

Other

lrint (GLIBC)

cv::computeDescriptors

memcpy (libc)

llrint (GLIBC)

cvflann::KDTreeIndex

cv::remapBilinear

cv::warpPerspectiveInvoker

Fig. 8: Execution profile of the VS application

system. We use the Application Fault Injection (AFI) [4]
tool to perform error injections and evaluate the application’s
resiliency. Figure 7 shows the main components of AFI.

AFI is composed of two modules. The first module, Fault
Injector takes the un-modified application binary, and injects
error bits into the application’s architectural state. Users can
change the injection configurations to specify where to inject
errors and how many errors to inject per run. For our study,
we configure AFI to inject one single bit error (bit flip) in
a general purpose register (GPR) or a floating point register
(FPR). The execution cycle at which the error is injected is
random. Once the program execution is continued after the
error injection, the second module, the Fault Monitor, will
check the application’s running state and capture a potential
hang or crash. If the application finishes normally, the Fault
Monitor invokes a result checking procedure to determine if
the outcome of the error injection is an SDC or Masked result.

We perform separate experiments for error injections in
GPRs and FPRs as we want to separately examine the vul-
nerability of these two register types to single bit flips.

C. Studying full end-to-end workflow vs. small (hot) kernels

An optimized statically compiled binary (using GCC 4.8.2
and OpenCV version 2.4.9) of the VS algorithm spans ∼1.5
million lines of assembly instructions. Error injection experi-

6

ments on a large application like the VS algorithm, that run to
completion, are time consuming and therefore limit the number
of error injections that can be performed.

Since the application is a composition of many program and
library functions, the question arises– can we simply carry
out a resiliency study of some representative hot functions
(functions that account for a significant fraction of the ap-
plication execution time) and use the results to reason about
the resiliency of the VS algorithm? If so, can we then study
the resiliency of just those functions? This can lead to either
reduced overhead (less number of error injections) or increased
coverage (error injections take lesser time to run to completion
and hence we can potentially do more of them).

To investigate further, we undertake a case study to per-
form resiliency analysis on a hot kernel taken from the VS
application to see if the resiliency profile of the kernel is
representative of the full end-to-end application. We show
in Section VI-C that this is not the case and the result of
such an analysis is sub-optimal. This further motivates the
need to develop and analyze full end-to-end applications that
realistically simulate the full workflow, as opposed to studying
just small kernel benchmarks that perform individual tasks.

Fig 8 shows the execution time distribution (by function)
for the VS algorithm extracted using the Linux utility tool
Perf [41]. Approximately 68% of the execution time is spent
in OpenCV libraries [42]. 54.4% of the total execution time is
consumed by just one OpenCV function – WarpPerspectiveIn-
voker, which is called from the WarpPerspective function, that
applies a perspective transformation to an image according to
a transformation matrix. Thus, we choose WarpPerspective as
the hot function whose resiliency profile we study.

We design a toy benchmark called WP that takes an im-
age and a matrix as inputs and calls the OpenCV function
WarpPerspective on them and returns the transformed image
as the output. Essentially, WP is equivalent to having a stand-
alone WarpPerspective function and the output of WP is the
return value of the function as seen by the VS application. The
function WarpPerspective in turn calls two other functions:
warpPerspectiveInvoker and remapBilinear. We study the out-
comes from error injections in GPRs in these two functions
for VS and WP. Our error injection framework, AFI, gives us
the ability to control where the errors are injected and for this
experiment we only consider the error injection experiments
that inject errors in the functions of interest and observe the
outcome at the end of the program (either VS or WP).

D. Defining SDC quality

As described in Section V-A, we define any deviation in the
application output due to an error as a Silent Data Corruption
or SDC. SDCs are the least desirable outcome of errors since
they are very hard to detect until the application execution
is completed and the corrupted output is generated. At that
time it is too late for recovery techniques to correct the
error. Crashes, on the other hand, can be detected using low
cost symptom-based detectors [35] and hence protecting error
sites that produce crashes incurs low overhead. Since SDCs

do not produce any easily detectable software symptoms,
protection against SDCs is normally done through techniques
like redundancy that have high overhead. In order to reduce
the resiliency overhead, we aim to quantify the egregiousness
or severity of the SDCs produced so we can identify tolerable
or benign SDC error sites that do not need to be protected.

Since the VS application produces an image (mini
panorama) as the output, the check to determine if an SDC
was produced is an image comparison between the error-
free application’s output (henceforth referred to as the golden
output) and the corrupted output produced by the application
execution injected with an error (henceforth referred to as the
faulty output). To determine if there is an SDC, AFI’s result
checking procedure simply compares the error-free output,
known a priori, with the output produced by the erroneous
execution, and classifies the outcome as an SDC if there is
any difference between the two images.

In addition to knowing how many error injection experi-
ments result in SDCs, we are also interested in quantifying
the quality of the SDCs produced; i.e., the deviation between
the golden and the faulty output. To do this, we define a quality
metric which is calculated as follows:

Given a golden image g img and a faulty image f img,
we first apply some global transformations to ensure that
differences due to perspective, lighting, camera angle etc. are
removed. We do this because, in our system, the end purpose is
to use the output image of the VS application for identification,
tracking and/or surveillance. Hence we are more concerned
with the content of the image and can tolerate minor cosmetic
disturbances in the final image. The two transformed image
matrices obtained after this corrective step are g img tr and
f img tr. The pixel by pixel difference of these two images is
given by the matrix pixel diff img, such that

pixel diff img = g img tr− f img tr

Since in our scenario of interest, the final panorama is going
to be viewed by a human being, we can tolerate some errors
in the color gradation of individual pixels. Thus, we only
wish to capture those differences in the image where the pixel
coloration is significantly modified. For this purpose, we define
another matrix pixel 128 diff img where we only store values
from pixel diff img if the difference value is greater than 128,
that is over half the range for an 8 bit pixel which can assume
values between 0 and 255. Then, the relative l2 norm, which
estimates the deviation of the faulty output image from the
golden output image (in percentage) is described as,

relative l2 norm =
||pixel 128 diff img||2

||g img tr||2
∗ 100

where, for an image X having n pixels x1, x2, . . . , xn

||X||2 =
√
x2
1 + x2

2 + . . .+ x2
n

Once the relative l2 norm of a faulty image has been
calculated, we then assign that SDC an integer number called
the Egregiousness Degree (ED) which corresponds to the floor
of its relative l2 norm value. The higher the ED, the worst the

7

0
10
20
30
40
50
60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30N
um

be
r o

f I
nj

ec
tio

ns

Register Number

INPUT 1 INPUT 2

0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000%
 To

ta
l E

rr
or

 In
je

ct
io

ns

Number of Error Injections

Crash Hang Mask SDC

(a)

(b)

Fig. 9: Graphs to show Coverage of error injection experiments. (a)
Different error injection outcome rates with increasing number of
error injection experiments for VS algorithm. The knee of the curve
stabilizes at 1000 error injections. (b) Number of errors injected in
different GPRs across 1000 experiments show a uniform distribution.

quality of the corrupted output image. For example, if an SDC
output has a relative l2 norm of 10.25%, it is assigned an ED
of 10. Any SDC that has a relative l2 norm of greater than
100%, is not assigned an ED and is automatically categorized
as an egregious SDC that must be protected.

VI. RESULTS

A. Resiliency Profile of Video Summarization Algorithm

As described in Section V-A, we determine the minimum
number of error injections needed by studying the trend curves
of the Mask, Crash, SDC and Hang rates with increasing
number of error injections. As seen in Fig 9(a), the trend
curves for the different rates start stabilizing after 1000 er-
ror injections and only vary slightly with increasing error
injections. Thus, we conclude that a minimum of 1000 error
injections is required to provide a statistical summary of the
VS algorithm. Unless otherwise specified, all our experiments
use 1000 error injections (for each type of register; combined
GPR and FPR is 2000 error injections).

The random error injections also provide good coverage in
terms of the registers and bits in which the errors are injected.
A representative histogram is presented in Fig 9(b). It shows
that the errors are uniformly distributed among the 32 GPRs
(for both inputs). We similarly confirm that the errors are
uniformly distributed among 64 bits within the registers. For
brevity, we have shown the coverage data (minimum error
injections required and register coverage) for error injections
in GPRs. Error injection experiments for all the different
algorithms (GPR and FPR) show similar trends.

Figure 10 shows the different error injection outcome rates
for 1000 error injections each in GPRs and FPRs for the
VS algorithm. The resiliency profile looks very different for
injections in the GPR and the FPR registers and we will
explore these differences in the following paragraphs.

0

10

20

30

40

50

60

70

80

90

100

GPR FPR GPR FPR

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns

SDC Hang Crash Masked

INPUT 1 INPUT 2

Fig. 10: Resiliency Profile for the VS algorithm. We show the different
error outcome rates for errors injected in GPR and FPR registers for
the two different inputs.

Error Injections in GPRs: Instructions that use GPRs form
the bulk of our application and are heavily used in memory and
control instructions and hence errors in them lead to the large
Crash rate (40.16%). Analyzing the Crash outcomes further,
we see that the majority of the crashes can be attributed
to the following two causes: 1) Segmentation Faults that
generally occur due to memory access violations (92%), and
2) Abort signals raised by the application/library when it
encounters internal constraint violations (8%). Analyzing the
Crash causing error sites further, we see no clear trend that
corruption of certain registers or bit positions in the registers
are more likely to result in a Crash. This is primarily because
all the GPR registers are used heavily in control (corruption of
any bit can cause a Crash) and memory (higher order bits more
likely to cause a Crash) operations and, hence, are vulnerable
to catastrophic outcomes when corrupted.

Error Injections in FPRs: Errors injected in the FPRs of
the VS application are Masked 99.7% of the time. This is
due to the way FPRs are used in the application. The VS
algorithm operates on images which are stored as 8-bit integer
pixels. Floating point operations are only used when some
manipulation of the pixels is required. To do this, the integer
pixels are converted to floating point, some transformation is
applied and then they are converted back to integer using a
saturation algorithm. The saturation algorithm causes many
potentially SDC causing errors to become masked.

B. Resilience of Approximate VS Algorithms

Figure 11a shows the error injection results for 1000 error
injection experiments in the GPRs of the different approxima-
tion algorithms compared with the baseline VS application for
both the inputs. Similar to the baseline VS algorithm, FPR error
injections in the approximate algorithms are masked > 99.5%
of the time and hence we do not show them here. The Crash,
Mask and Hang rates of the approximate algorithms is very

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VS VS_RFD VS_KDS VS_SM VS VS_RFD VS_KDS VS_SM

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns
Masked Crash Hang SDC

INPUT 1 INPUT 2

(a)

SDC Hang Crash Masked

0

10

20

30

40

50

60

70

80

90

100

VS WP VS WP

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns

warpPerspectiveInvoker remapBilinear

(b)

Fig. 11: Resiliency profiles (Crash, SDC, Mask and Hang rates) for the different VS algorithms and toy benchmark WP. (a) Resiliency Profile
for the VS algorithm and its approximate versions. We show the different error outcome rates for errors injected in GPR register for the two
different inputs. (b) Comparison of the Masked, SDC and Crash rates for error injections in two hot functions for VS application and the
stand-alone toy application WP.

similar to the baseline VS algorithm. This is not surprising
since the execution profiles of the approximate algorithms are
very similar to the baseline VS algorithm. For Input1, the SDC
rates increase from 1% (VS) to 3% and 2.5% for VS RFD and
VS KDS respectively. In both these approximate algorithms,
the errors that may have been masked in the final image
(due to overlap by similar frames in the stitching process)
are now exposed as SDC due to a reduction in redundancy;
precipitated by dropping frames from input in VS RFD or due
to insufficient matching key-points in VS KDS.

C. Trade-offs of studying an end-to-end workflow

As discussed in Section V-C, we ask the following question:
can we estimate the resiliency of the VS application by
studying the resiliency of the representative stand-alone WP
application? The results of the error injection experiments for
both VS and WP are shown in Figure 9(b).

The Crash, Mask and SDC profiles of the standalone WP is
different from that of an end-to-end workflow like the VS. In
the VS application, the output of the WarpPerspective function
would then be used to perform some other computation further
down the workflow and, hence, there is a compositional effect
where multiple computations flow into each other. This causes
the effects of an error to manifest differently than if the
workflow ended at the output of the hot function. In our case,
the compositional effect leads to higher masking as the SDCs
that are generated by errors in the WarpPerspective function
are masked later in the workflow (for example, an adjacent
image could later be stitched over the area corrupted by the
function output). Hence, we conclude that it is essential to
analyze an entire end-to-end workflow, instead of just studying
hot kernels/functions, to get an accurate understanding about
the resiliency behavior of an application.

0

20

40

60

80

100

0 20 40 60 80 100

%
 o

f T
ot

al
 S

DC
s

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

%
 o

f T
ot

al
 S

DC
s

SDC Egregiousness degree

0

20

40

60

80

100

0 20 40 60 80 100
SDC Egregiousness degree

(a) (b)

(c) (d)

VS VS_RFD VS_SM VS_KDS

Fig. 12: Quality of SDCs generated by GPR error injections in
different video summarization algorithms. Each point on a given
curve represents the percentage of SDCs (Y axis) generated that have
an ED less than or equal to the ED represented on the X axis. (a)
and (b) - The ED of the SDC is calculated by comparing against
VS golden for Input1 and Input2 respectively. (c) and (d) - The ED
of the SDC is calculated by comparing against the corresponding
Approx golden for Input1 and Input2 respectively. Some of the curves
do not reach 100% on the Y axis due to a very small fraction of SDCs
that are classified as needing protection and not assigned an ED.

D. SDC quality

Figure 12 classifies SDCs according to their ED. In order to
study a statistically significant number of SDCs, we perform
5000 GPR error injections per input and analyze the resulting
SDCs. To calculate the ED of an SDC output image, we com-
pare it to a baseline golden image. For the SDCs produced by

9

the VS algorithm, this is straightforward as the golden image is
the output of the error-free execution of the VS algorithm. For
SDCs produced by the approximate algorithms, there are two
potential golden images to compare against – the golden VS
output (VS golden) or the golden output of the corresponding
approximate algorithm (Approx golden). For example, ED
of an SDC produced by error injection in VS RFD can
be calculated by either comparing it to VS golden or by
comparing it to VS RFD golden. We show the distribution
of SDC egregiousness using both these methods.

Figure 12(a) and Figure 12(b) show the ED of the SDCs
when compared against VS golden for Input1 and Input2 re-
spectively. The degradation in SDC quality in the approximate
algorithms, as evidenced by the larger fraction of SDCs having
higher EDs, is particularly sharp for Input1 (Figure 12(a)). On
further analysis we observe that this is because the deviation
between Approx golden and VS golden calculated using the
metric specified in Section V-D is large. Even though we
verified by visual inspection that the approximate algorithm
outputs were acceptable (Section IV-A), our metric assigns
them a large ED. This may imply that our metric is very
conservative and we undertake a discussion about this in
Section VII. For example, the ED of the VS SM golden for
Input 1 when compared to VS golden is 37. It thus follows
that all subsequent SDCs produced by VS SM will have an
ED greater than or equal to 37. This is the reason we see the
shift in the ED curves of VS SM with respect to the baseline
VS in Figure 12(a).

Thus, to get a true understanding of the quality of the
SDCs produced by the approximate algorithms, we estimate
their egregiousness by comparing them to their corresponding
Approx golden output (Figure 12(c) and Figure 12(d)). The
graphs show that the overall trend for the SDC quality for
the VS and its approximate algorithms are very similar. The
approximations do not fundamentally change the quality of
the SDCs produced. For Input 2 (Figure 12(d)), the SDCs
from VS KDS have slightly worse quality (80% of SDCs
produced by VS have ED less than 6 as opposed to ED of
14 for VS KDS). This follows the trend seen in Section IV-A,
where for Input 2, VS KDS shows the most energy gains from
less computation as a result of dropped frames. This in turn
leads to a degradation of output quality. Another trend seen
is that overall, the SDCs produced are relatively benign (even
with our conservative metric). For example, for Input 2, 87%,
87%, 90% and 73% of the SDCs for VS, VS RFD,VS SM and
VS KDS respectively have an ED of less than 10. Thus, a large
majority of the SDC causing error-sites need not be protected
if an error of 10% is acceptable.

Hence, although approximating the VS application mini-
mally changes its resiliency profile by slightly increasing the
number of SDCs generated, this is offset by the fact that a
large percentage of these SDCs may be tolerable and hence
the cost of protecting them is low. Thus, it is possible to
realize safe, yet efficient approximations for this state of the
art Video Summarization algorithm from the point of view of
performance, power and reliability.

Fig. 13: a) Default output (VS) b) Approximate output (VS SM) c)
Absolute pixel difference between default and approximate outputs d)
Thresholded difference between default and approximate outputs.

VII. DISCUSSION ON SDC QUALITY METRIC

Gauging if an approximate algorithm is good enough or if
an SDC is tolerable in image processing applications like the
VS algorithm is heavily dependent on the image comparison
algorithm that calculates how closely the approximated image
or the faulty image matches the original image. While manual
inspection is still the best way to determine if the quality of an
image is acceptable, this is impractical in cases where a large
number of such images are generated or when an automated
decision has to be made based on the error seen in the output.
In Section V-D, we outline an algorithm and metric to estimate
the error in the output image, but our algorithm can produce
false positives and can label some SDCs as more egregious
than they actually are. For the outputs of the VS SM algorithm
the relative l2 norm generated by the image comparison al-
gorithm is approximately 37% and 8% for Input1 and Input2
respectively. This is because as can be seen in Figure 13(c), the
pixel difference of the two images is considerable as the pixels
in the faulty image have slightly shifted when compared to
the default image. But to a human viewing these two images,
there is no perceivable difference. Another factor to consider is
that two images having the same relative l2 norm may not be
equally egregious depending on the final usage of the output.
For example, even if 30% of a faulty image is blacked out, it
may still be useful for surveillance or tracking if the remaining
70% had useful information that can be deciphered by a human
being. Estimating an automated metric to compare images used
for such domains remains an open problem.

VIII. RELATED WORK

A. Approximate computing

Section II-B discusses many trends in approximate com-
puting. A related area is analysis that performs criticality
testing [43], [44] and works that take advantage of soft compu-
tations - resilient code regions that result in tolerable output
corruptions, when perturbed by errors - to reduce resiliency
overheads in approximate environments [45], [46], [47], [48].
To the best of our knowledge, this is the first work that directly
measures the resilience of approximate algorithms.

10

B. Resiliency

Soft error resilience has been studied over several decades
(dating back to 1978 [49]) with a large body of more recent
work at various levels of design hierarchy, such as the logic
level [50], [51], microarchitectural level [52], [53], and archi-
tectural level [54], [55], [56], [57]. For example, Mukherjee
et al. proposed the concept of the Architectural Vulnerability
Factor (AVF) in [54] to quantify the resilience of various
architectural components. In [52], Kim et al. studied the soft
error sensitivity of functional blocks using software simulated
fault injections into the RTL model of a microprocessor
(picoJava-II). Though showing significant masking effects of
more than 85% reported by Wang et al. in [53], none of these
prior works specifically considered the algorithmic effects
on soft error resilience, nor did they evaluate approximation
mechanisms with acceptable end-quality.

More recently, there has been an increasing interest in
studying resilience at the application level for low-cost re-
liability solutions. SWAT/mSWAT [58], [59], [60], [61] take
advantage of application’s abnormal behavior, referred to as
symptoms, to identify faulty units using light-weight diagnosis
algorithms. In [62] Thomas et al. propose the term EDC de-
scribing outcomes that deviate significantly from the error-free
outcomes of an application. Based on heuristics learned from
EDC characterization, they propose a detection mechanism
to identify variables and locations to protect against EDC.
We propose a novel quantitative metric for EDC evaluation
on a complete video stitching algorithm and approximation
algorithms to achieve improvement in energy efficiency and
performance without significant loss in end-quality.

C. Computer vision for UAV-based mobile cognition

Extensive research has gone into image-stitching algorithms
in the field of computer vision. In [63], Szeliski describes
various algorithms for aligning and stitching images into seam-
less 2D photo-mosaics. Various state-of-the-art algorithms to
handle and summarize video content captured on-board a
UAV-based processor, have been described in [27]. Rane et
al. [64] proposed a method to evaluate mosaic quality using
maximum information retrieval. The method uses the similar-
ity between the stripes of the mosaic and the original frames
to evaluate performance of mosaicking methods. The videos
in the VIRAT dataset contain both translational and rotational
movements. However, unlike the algorithm evaluated in this
paper, this method works when camera has only translational
movement. The evaluation method proposed by Camargo et al.
[65] uses the distances between the corresponding keypoints
in all frames after the mosaic is generated. This method is
used to compare different optimization methods for parameter
estimation, but does not consider the image distortions caused
by fault injection. The paper [66] empirically evaluates the
detectability of objects of interest for human observers when
temporally local mosaics are applied on the live aerial video,
but cannot provide quantitative evaluation for fault injection.
Paalanen et al. [67] proposed a method to evaluate the mosaic
quality using ground truth data. However, ground truth data

can only be obtained in synthetic datasets. Since the dataset
that we use for our evaluations is a real-word one, determining
the ground truth is difficult. El-Saban et al. [68] use human
eye to measure precision/recall of the mosaic quality of image
pairs. However, this method too cannot provide scientific
measurement of the distortion caused by fault injection.

IX. CONCLUSION

In this work we study an end-to-end video summariza-
tion VS application that serves as a representative emerging
workload for the domain of Real Time Edge Computing.
We characterize the workflow of the application and examine
three different approximation techniques to improve the power
and performance efficiency of the workload while maintaining
sufficient output integrity. We undertake a detailed resiliency
study of the application as well as its approximate versions and
show that the approximations do not degrade the resiliency
of the baseline algorithm. We further introduce metrics to
quantify the error introduced in an output image and use them
to understand the behavior of SDCs in the different Video
Summarization algorithms. We show that many of the SDCs
produced by the application can be tolerable to the end user
and hence can reduce the cost of protecting the application
against transient faults.

REFERENCES

[1] G. Ananthanarayanan, P. Bahl, P. Bodk, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58–67,
2017.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, pp. 30–39, Jan 2017.

[3] R. Viguier et al., “Resilient mobile cognition: Algorithms, innovations,
and architectures,” in ICCD, 2015.

[4] L. Wang et al., “Power-efficient embedded processing with resilience
and real-time constraints,” in ISLPED, 2015.

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design.,” in ETS, pp. 1–6, 2013.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGPLAN Not.,
2012.

[7] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. C. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in SIGSOFT FSE, pp. 124–134, 2011.

[8] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in Pro-
gramming Language Design and Implementation, PLDI, pp. 198–209,
2010.

[9] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“Sage: Self-tuning approximation for graphics engines,” in International
Symposium on Microarchitecture, MICRO, pp. 13–24, 2013.

[10] J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant gpu applications,” Multimedia,
IEEE Transactions on, vol. 15, no. 2, pp. 279–290, 2013.

[11] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Es-
maeilzadeh, “Towards statistical guarantees in controlling quality trade-
offs for approximate acceleration,” in International Symposium on
Computer Architecture, ISCA, 2016.

[12] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive control
of approximate programs,” in Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pp. 607–621, 2016.

[13] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications,
OOPSLA ’13, (New York, NY, USA), pp. 33–52, ACM, 2013.

11

[14] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels,” SIGPLAN Not., vol. 49, pp. 309–328, Oct. 2014.

[15] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “Flexjava:
Language support for safe and modular approximate programming,” in
Joint Meeting on Foundations of Software Engineering, 2015.

[16] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze,
and M. Oskin, “Accept: A programmer-guided compiler framework for
practical approximate computing,” in Technical Report UW-CSE-15-01-
01, University of Washington, 2015.

[17] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in Programming Language Design and Implemen-
tation, PLDI, pp. 164–174, 2011.

[18] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability
type inference for flexible approximate programming,” in International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA, pp. 470–487, 2015.

[19] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik, “Expax:
A framework for automating approximate programming,” in Technical
Report, Georgia Institute of Technology, 2014.

[20] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor
from the ground up to allow voltage/reliability tradeoffs,” in Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
pp. 1–11, 2010.

[21] J. Sartori and R. Kumar, “Architecting processors to allow volt-
age/reliability tradeoffs,” in International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES, pp. 115–
124, 2011.

[22] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-
ation for general-purpose approximate programs,” in Microarchitecture
(MICRO), International Symposium on, pp. 449–460, 2012.

[23] J. San Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppel-
ganger: A cache for approximate computing,” in International Sympo-
sium on Microarchitecture (MICRO), 2015.

[24] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
dram refresh-power through critical data partitioning,” SIGPLAN Not.,
vol. 46, no. 3, pp. 213–224, 2011.

[25] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Mad-
den, B. Mozafari, and I. Stoica, “Knowing when you’re wrong: building
fast and reliable approximate query processing systems,” in International
Conference on Management of Data, SIGMOD, pp. 481–492, 2014.

[26] K. Swaminathan et al., “A case for approximate computing in real-time
mobile cognition,” in Workshop on Approximate Computing Across the
System Stack (WACAS), 2015.

[27] C. Lin et al., “Moving camera analytics: Emerging scenarios, challenges,
and applications,” IBM JRD, 2015.

[28] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking.,” in ICCV, 2005.

[29] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in ECCV, 2006.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient
alternative to sift or surf,” in ICCV, 2011.

[31] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, 1981.

[32] S. Oh et al., “A large-scale benchmark dataset for event recognition in
surveillance video,” in CVPR, 2011.

[33] A. Vega et al., “Resilient, UAV-embedded real-time computing,” in
ICCD, 2015.

[34] A. Meixner, M. Bauer, and D. Sorin, “Argus: Low-Cost, Comprehensive
Error Detection in Simple Cores,” in MICRO, 2007.

[35] M.-L. Li et al., “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient Systems Design,” in ASPLOS,
2008.

[36] M.-L. Li et al., “Accurate Microarchitecture-Level Fault Modeling for
Studying Hardware Faults,” in HPCA, 2009.

[37] A. Pellegrini et al., “CrashTest: A Fast High-Fidelity FPGA-based
Resiliency Analysis Framework,” in ICCD, 2008.

[38] A. Pellegrini et al., “CrashTest’ing SWAT: Accurate, Gate-Level Eval-
uation of Symptom-Based Resiliency Solutions,” in DATE, 2012.

[39] S. Nomura et al., “Sampling + DMR: Practical and Low-overhead
Permanent Fault Detection,” in ISCA, 2011.

[40] S. Hari, S. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting
Application-level Fault Equivalence to Analyze Application Resiliency
to Transient Faults,” in ASPLOS, 2012.

[41] “perf: Linux profiling with performance counters.”
[42] “Open source computer vision library (OpenCV),” 2015.
[43] M. Carbin and M. C. Rinard, “Automatically identifying critical input

regions and code in applications,” in International Symposium on
Software Testing and Analysis, ISSTA, pp. 37–48, 2010.

[44] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “Autosense: A
framework for automated sensitivity analysis of program data,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[45] Q. Shi, H. Hoffmann, and O. Khan, “A cross-layer multicore architecture
to tradeoff program accuracy and resilience overheads,” IEEE Computer
Architecture Letters, vol. 14, no. 2, pp. 85–89, 2015.

[46] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency,” in International
Symposium on Microarchitecture (MICRO), pp. 1–14, 2016.

[47] P. Roy, R. Ray, C. Wang, and W. F. Wong, “Asac: Automatic sensitivity
analysis for approximate computing,” in Conference on Languages,
Compilers and Tools for Embedded Systems, LCTES ’14, pp. 95–104,
2014.

[48] A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in Dependable Systems and Networks (DSN), pp. 1–12,
2013.

[49] J. Ziegler et al., “IBM Experiments in Soft Fails in Computer Electronics
(1978 - 1994),” IBM JRD, 1996.

[50] E. Czeck and D. Siewiorek, “Effects of Transient Gate-Level Faults on
Program Behavior,” in Int. Symp. on Fault-Tolerant Computing, 1990.

[51] P. Shivakumar et al., “Modeling the Effect of Technology Trends on the
Soft Error Rate of Combinational Logic,” in DSN, 2002.

[52] S. Kim and A. Somani, “Soft Error Sensitivity Characterization for
Microprocessor Dependability Enhancement Strategy,” in DSN, 2002.

[53] N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing the Effects
of Transient Faults on a High-Performance Processor Pipeline,” in DSN,
2004.

[54] S. Mukherjee et al., “A Systematic Methodology to Compute the Archi-
tectural Vulnerability Factors for a High-Performance Microprocessor,”
in MICRO, 2003.

[55] A. Biswas et al., “Computing Architectural Vulnerability Factors for
Address-Based Structures,” in ISCA, 2005.

[56] X. Li, S. Adve, P. Bose, and J. Rivers, “SoftArch: An Architecture-Level
Tool for Modeling and Analyzing Soft Errors,” in DSN, 2005.

[57] X. Li, S. Adve, P. Bose, and J. Rivers, “Architecture-Level Soft Error
Analysis: Examining the Limits of Common Assumptions,” in DSN,
2007.

[58] M.-L. Li et al., “Trace-Based Microarchitecture-Level Diagnosis of
Permanent Hardware Faults,” in DSN, 2008.

[59] M.-L. Li et al., “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design,” in ASPLOS,
2008.

[60] S. Sahoo et al., “Using Likely Program Invariants to Detect Hardware
Errors,” in DSN, 2008.

[61] S. Hari et al., “mSWAT: Low-Cost Hardware Fault Detection and
Diagnosis for Multicore Systems,” in MICRO, 2009.

[62] A. Thomas and K. Pattabiraman, “Error Detector Placement for Soft
Computation,” in DSN, 2013.

[63] R. Szeliski, “Image alignment and stitching: A tutorial,” 2004.
[64] K. Rane et al., “Mosaic evaluation: An efficient and robust method based

on maximum information retrieval,” Int. J. Computer Applications, 2013.
[65] A. Camargo, Q. He, and K. Palaniappan, “Performance evaluations

for super-resolution mosaicing on UAS surveillance videos,” Int J Adv
Robotic Systems, 2013.

[66] B. Morse et al., “Application and evaluation of spatio-temporal enhance-
ment of live aerial video using temporally local mosaics,” in CVPR,
2008.

[67] P. Paalanen, J.-K. Kämäräinen, and H. Kälviäinen, “Image based quan-
titative mosaic evaluation with artificial video,” in Image Analysis,
pp. 470–479, 2009.

[68] M. El-Saban, M. Izz, A. Kaheel, and M. Refaat, “Improved optimal
seam selection blending for fast video stitching of videos captured from
freely moving devices,” in ICIP, 2011.

12

