
Approximate Checkers
Abdulrahman Mahmoud

amahmou2@illinois.edu
University of Illinois at
Urbana-Champaign

Paul Reckamp
paulrr2@illinois.edu

University of Illinois at
Urbana-Champaign

Panqiu Tang
panqiut2@illinois.edu
University of Illinois at
Urbana-Champaign

Christopher W. Fletcher
cwfletch@illinois.edu
University of Illinois at
Urbana-Champaign

Sarita V. Adve
sadve@illinois.edu

University of Illinois at
Urbana-Champaign

Abstract
With the end of conventional CMOS scaling, efficient re-
siliency solutions are needed to address the increased likeli-
hood of transient hardware errors. Many resiliency solutions
consider redundancy in time or space in order to detect er-
rors during deployment. However, full modular redundancy
is expensive, introducing large performance overheads in
order to improve reliability.
In this work, we propose the use of approximate check-

ers to detect when errors may occur during execution, and
only trigger application re-execution when the approximate
checker identifies an error. We implement the approximate
checker using a neural network, and show that for many
applications, the approximate checker can achieve very high
accuracy in detecting errors.

1 Overview
With the end of conventional CMOS scaling, hardware is
becoming increasingly susceptible to errors in the field [3–
5, 10, 12, 13]. Systems must be able to handle such failures
in order to guarantee continuous error-free operation. Hard-
ware error detection mechanisms form a crucial part in de-
vising such reliability solutions. Traditional solutions use
heavy amounts of redundancy (in space or time) to detect
hardware faults, and can introduce very high overheads. De-
spite the high overheads, modern systems today commonly
rely on full redundancy to meet their resiliency targets even
though lower cost techniques have been proposed in the
literature [6–9, 13]. For example, as recently as March 2019,
Tesla announced its new Full Self-Driving processor for it’s
autonomous driving fleet, which includes a fully redundant
co-processor on chip to guard against hardware errors [11].

To tackle the high costs introduced by full redundancy, we
propose augmenting certain applications with a small neural
network (NN) which raises a flag when an error manifests
itself during execution. The neural network acts as a fast,
approximate checker, quickly making a decision whether or
not it detected an error, in order to avoid an indiscriminate
re-execution for all applications.
Figure 1 depicts the general overview of how an approx-

imate checker functions. An approximate checker takes as

input the input and output of an application, and predicts
whether an error occurred or not. Based on the prediction by
the approximate checker, the runtime system can make a de-
cision to rerun the application or not, based on the confidence
of the approximate checker in identifying the occurrence of
an error during execution.

Intuitively, an approximate checker looks for a correlation
between the input of an application, and the output observed
by the application. By learning the relationship between
the input and the output, the approximate checker can run
relatively quickly while providing a "sanity check" for the
user without requiring a full rerun of the application. Since
not all applications require precise outcomes, a small error
which does not affect the final output would be learned by
the approximate checker as not requiring re-execution.

2 Design of Approximate Checker
One primary objective in the design of the approximate
checker is that it needs to be fast in order to offset the cost
of redundantly rerunning the application. Thus, we avoid
deeper neural networks (DNNs) because although theymight
be more accurate in general, they also incur a larger per-
formance overhead from the many additional weights and
hidden layers. For our design, we target a few hidden layers
with a relatively small number of neurons per layer in a fully
connected fashion, to address this issue. Further, the approx-
imate checker can be run on a dedicated NN accelerator to
minimize the runtime of checking for errors.

Figure 1. An approximate checker takes as input the input
and output of an application, and checks whether an error
occurred during execution.

1



Table 1. Summary of applications explored and results

Application Domain Topology Error Model Accuracy (%) Checker Category

Black Scholes [1] Financial Analysis 7->128->64->2
7->16->8->2 Random Output 85

77
✓

✓
2

Inversek2j [1] Robotics 4->128->64->2
4->8->2 Random Output 98

94
✓

✓
2

JPEG [1] Compression 6145->1280->64->2 Random Output 54 ✗ 1

K-means [1] Machine Learning 7->128->64->2
7->8->4->2 Random Output 57

54
✗

✗
1

Sobel [1] Image Processing 11->128->64->2
11->8->2 Random Output 89

80
✓

✓
3

Jmeint [1] 3D Gaming 19->128->64->2 Random Shuffle 73 ✓ 2
FFT [1] [2] Signal Processing 128->128->64->2 Random Scaling 86 ✓ 1
AES [2] Security 64->128->64->2 Random Shuffle 50 ✗ 1

Backprop [2] Machine Learning 78->128->64->2 Random Shuffle 99 ✓ 3

GEMM [2] Linear Algebra 192->128->64->2
192->16->8->2 Random Scaling 99

99
✓

✓
1

NW [2] Bioinformatics 384->128->64->2 Random Shuffle 50 ✗ 2

Sort [2] Common Kernel 60->128->64->2 Swap Two Values
Random Shuffle

50
99

✗

✓
1

SPMV [2] Linear Algebra 384->128->64->2 Random Shuffle 50 ✗ 1

To train the approximate checker, we generate 80,000 tu-
ples of the form {input, output, label}, where the output is
either the correct output as generated by the application
without a perturbation, or alternatively an erroneous output
that is generated by transforming the legal output. We gener-
ate 40,000 correct and 40,000 incorrect outputs, labeling the
training entry accordingly. Incorrect outputs are obtained
for many applications by substituting output values with
random uniform values of the same type. We ensure that the
output is legal (i.e., it is not trivially incorrect); however, our
corruption model is extreme to test whether an approximate
checker can learn anything before fine-tuning to a more rig-
orous and realistic error model. For testing, we use 20,000
tuples split evenly between correct and incorrect entries and
obtained in a similar fashion to the training set, described
above.

3 Results
We explored 13 applications from the AxBench [1] andMach-
Suite [2] benchmark suites, spanning many different do-
mains. Table 1 shows each application studied, along with
the NN topology used for the Approximate Checker (Column
3) and the error model used to generate erroneous outputs
(Column 4).

We partitioned the applications into 3 classes, based on
the potential of employing an approximate checker

1. Outputs can be checked precisely.
2. Outputs can be checked approximately.
3. No known approximate output validation exists.

For example, a precise method to check SORT would be
to scan over the output and ensure the final order is sorted
correctly, while also checking that all the input values appear

in the output. Category 2 applications, such as Blackscholes,
are based on a model or a heuristic, and the precise output
value has less importance in the grand scheme of things.
Finally, for Category 3 applications, no known approximate
output validation exists: known validation techniques are
either indirect or are variations on original computation (e.g.
Sobel edge detection).

Column 5 of Table 1 shows the accuracy measured for the
different applications, and Column 6 indicates whether the
application has potential for further exploration (based on
whether the accuracy is greater than 70%).

We find that the Approximate Checker for some appli-
cations such as JPEG, AES, sort, and SPMV do not learn
anything (an accuracy near 50%), despite a very egregious
error model being used (randomization of the original, cor-
rect output). This eliminates these applications from further
study, since we would not expect a fine-grained error model
to successfully predict errors. To illustrate this point, we can
see the example with sort, where we found high accuracy
with randomization, but very low accuracy once we changed
the error model to swap two values of the originally sorted
output.
However, many applications did surprisingly well. For

these applications, our preliminary results show that an ap-
proximate checker has a lot of promise, with some applica-
tions gaining very high accuracy such as Inversek2j, GEMM,
and Backprop. This encourages further exploration of more
realistic error models. We also find that some Category 1
applications observe decent accuracy (e.g., FFT). This could
be a result of the error model, but also warrants additional
exploration.

2



4 Conclusion
In this work, we present the idea of an approximate checker,
a low-cost companion NN model to an application to quickly
identify if an error occurring during execution resulted in an
output corruption. We provide a taxonomy for applications
which may benefit from an approximate checker, and show
that for some applications, an approximate checker can be
trained to have very high accuracy.
Moving forward, we plan to explore more rigorous error

models for training approximate checkers, and expand to
additional applications that can benefit from this form of
error detection.

Acknowledgements
This material is based upon work supported by the Applica-
tions Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA. We also thank the
reviewers for their valuable feedback.

References
[1] P. Lotfi-Kamran H. Esmaeilzadeh A. Yazdanbakhsh, D. Mahajan. 2017.

AXBENCH: A Multi-Platform Benchmark Suite for Approximate Com-
puting. IEEE Design and Test 34, 2 (April 2017), 60–68.

[2] Y. S. Shao G. Wei D. Brooks B. Reagen, R. Adolf. 2014. MachSuite:
Benchmarks for Accelerator Design and Customized Architectures. In
Proceedings of the IEEE International Symposium on Workload Charac-
terization. Raleigh, North Carolina.

[3] Shekhar Borkar. 2005. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and Degrada-
tion. IEEE Micro 25, 6 (2005).

[4] Franck Cappello, Geist Al, William Gropp, Sanjay Kale, Bill Kramer,
and Marc Snir. 2014. Toward Exascale Resilience: 2014 Update. Super-
comput. Front. Innov.: Int. J. (2014).

[5] Nathan DeBardeleben, James Laros, John T Daly, Stephen L Scott,
Christian Engelmann, and Bill Harrod. 2009. High-end Computing
Resilience: Analysis of Issues Facing the HEC Community and Path-
forward for Research and Development. Whitepaper (2009).

[6] W. Dweik, M. Annavaram, and M. Dubois. 2014. Reliability-Aware
Exceptions: Tolerating Intermittent Faults in Microprocessor Array
Structures. In 2014 Design, Automation Test in Europe Conference Exhi-
bition (DATE). 1–6. https://doi.org/10.7873/DATE.2014.114

[7] Dan Ernst et al. 2003. Razor: A Low-Power Pipeline Based on Circuit-
Level Timing Speculation. In MICRO.

[8] R. Hegde and N. R. Shanbhag. 2000. Algorithmic noise-tolerance for
low-power signal processing in the deep submicron era. In 2000 10th
European Signal Processing Conference. 1–4.

[9] K. Reick, P. N. Sanda, S. Swaney, J. W. Kellington, M. Mack, M. Floyd,
and D. Henderson. 2008. Fault-Tolerant Design of the IBM Power6
Microprocessor. IEEE Micro (2008).

[10] Philippe Ricoux. 2013. European Exascale Software Initiative EESI2-
Towards Exascale Roadmap Implementation. 2nd IS-ENES workshop
on high-performance computing for climate models (2013).

[11] Sean Hollister. 2019. Tesla’s new self-driving chip
is here, and this is your best look yet. Website.
(2019). https://www.theverge.com/2019/4/22/18511594/
tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet

[12] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello,
Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A Debardeleben,
Pedro C Diniz, Christian Engelmann, Mattan Erez, Saverio Fazzari,
Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven
Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber,
Jon Stearley, and Eric Van Hensbergen. 2014. Addressing Failures
in Exascale Computing*. International Journal of High Performance
Computing (2014).

[13] James F Ziegler and Helmut Puchner. 2004. SER–history, Trends and
Challenges: A Guide for Designing with Memory ICs. Cypress.

3

https://doi.org/10.7873/DATE.2014.114
https://www.theverge.com/2019/4/22/18511594/tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet
https://www.theverge.com/2019/4/22/18511594/tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet

	Abstract
	1 Overview
	2 Design of Approximate Checker
	3 Results
	4 Conclusion
	References

