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Abstract—Modern systems are increasingly susceptible to soft
errors in the field and traditional redundancy-based mitigation
techniques are too expensive to protect against all errors. Recent
techniques, such as approximate computing and various low-cost
resilience mechanisms, intelligently trade off inaccuracy in
program output for better energy, performance, and resiliency
overhead. A fundamental requirement for realizing the full
potential of these techniques is a thorough understanding of
how applications react to errors.

Approxilyzer is a state-of-the-art tool that enables an accurate,
efficient, and comprehensive analysis of how errors in almost
all dynamic instructions in a program’s execution affect the
quality of the final program output. While useful, its adoption
is limited by its implementation using the proprietary Simics
infrastructure and the SPARC ISA.

We present gem5-Approxilyzer, a re-implementation of
Approxilyzer using the open-source gem5 simulator. gem5-
Approxilyzer can be extended to different ISAs, starting with
x86 in this work. We show that gem5-Approxilyzer is both
efficient (up to two orders of magnitude reduction in error
injections over a naı̈ve campaign) and accurate (average 92%
for our experiments) in predicting the program’s output quality
in the presence of errors. We also compare the error profiles of
five workloads under x86 and SPARC to further motivate the
need for a tool like gem5-Approxilyzer.

I. INTRODUCTION

The end of conventional technology scaling has led to two
recent trends that consider incorrect outputs. First, the emergent
field of approximate computing [1]–[4] considers a deliberate,
but controlled, relaxation of correctness for better performance
or energy. Second, the increasing threat to hardware
reliability [5] and the high costs of traditional resiliency
solutions have led to significant research in alternative low-cost,
but less-than-perfect, solutions that let some hardware errors
escape as (user-tolerable) output corruptions [6]–[13].

The common underlying theme of both methods is to
improve system efficiency by accommodating controlled
errors (deliberate approximations or unintentional hardware
errors). Such computing paradigms have the potential to
significantly change how we design hardware and software (as
current systems are designed for exact computations). Their
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widespread adoption, however, requires an understanding of
how errors in computation affect the outcome of the execution.
In this work, we focus on software-driven solutions and we use
error analysis to mean the process of characterizing the effects
of a given set of errors on the execution and final output of
a given piece of software. Error injection – where an error is
deliberately injected in the execution of a given workload to
observe its effect – is a widely used error analysis technique.

A naı̈ve error analysis would perform an error-injection
campaign that injects errors in the executions of all applications
of interest, in every possible execution cycle, using all error
models of interest. Each erroneous execution would be
monitored for anomalous behaviour and any output produced
would be examined for possible corruption. Such a naı̈ve
campaign would provide a highly accurate error analysis but
would be impractical. More practical solutions (both with and
without error injections) have been proposed in the literature [2],
[4], [14]–[24] with varying degrees of accuracy (guarantees
on output quality), generality (applicable to any application),
comprehensiveness (estimating all possible errors in execution),
and automation (placing no undue burden on programmer,
such as code annotations to identify error-tolerant regions).

Our recent tool called Approxilyzer [25] (which builds on our
previous tool called Relyzer [26]) has furthered the state-of-the-
art in error analysis by providing the impact (execution anoma-
lies and output quality) of single-bit transient errors on every
operand register bit in virtually every dynamic instruction in a
program execution. It uses a hybrid technique of program anal-
ysis and error injections to perform this comprehensive analysis
with high accuracy while performing relatively few error injec-
tions. Furthermore, Approxilyzer can analyze general-purpose
applications while placing minimal burden on the programmer.

Approxilyzer’s unique features enable new avenues of
research, but limitations in its current implementation hinder its
usability. The tool currently relies on Wind River Simics [27],
a proprietary full-system simulator. The current implementation
is also designed to handle only applications compiled for the
SPARC ISA. The restrictions imposed from both the simulator
and ISA make a wide adoption of the tool challenging.

The main contribution of this paper is the development
of gem5-Approxilyzer, an open-source1 implementation of
Approxilyzer that enables support for more ISAs, beginning
with x86 in this work. We build our new tool using the open-

1https://github.com/rsimgroup/gem5-Approxilyzer



source gem5 simulator [28] which facilitates (with relative
ease) the future inclusion of more ISAs into the tool. Building
gem5-Approxilyzer required significant engineering effort to
support x86 error analysis on gem5. Approxilyzer’s original
implementation for SPARC assumes constant register size and
instruction encoding length, which is not the case for x86.

This work is the first to show Approxilyzer’s
effectiveness/accuracy with a different ISA, namely x86. We
show that our x86 implementation is effective in reducing
the number of error injections required by up to two orders
of magnitude over a naı̈ve campaign and predicts the impact
of errors on the program’s output quality with high accuracy
(>92% on average and up to 99.9% for some applications).

We also compare the comprehensive error profiles of our
workloads under the two ISAs — SPARC and x86. We show
that the error profiles of the same application can be rather
different under different architectures, which in turn can require
customized resiliency and approximation solutions. This result
further motivates the need for open-source tools such as gem5-
Approxilyzer that can enable such comparisons and aid in build-
ing better solutions and exploring new avenues of research.

II. (GEM5-)APPROXILYZER OVERVIEW

gem5-Approxilyzer is an implementation of
Approxilyzer [25] using the open-source gem5 simulator.
Hence, its interface, high-level design and techniques are the
same as those described in prior work [25], [26]. This section
provides a brief overview of the objectives, user interface, and
techniques for Approxilyzer and hence, for gem5-Approxilyzer.

A. High-Level Objective
The goal of gem5-Approxilyzer is to characterize the impact

of any single-bit transient error in a program’s execution
with high accuracy. The different ways in which an error can
impact execution are described in Section II-B. We use the
term error site(s) to refer to specific points in the application’s
execution where an error could be encountered. The error
model we use is single-bit transient errors in architectural
registers. Hence, we use error site to refer to a specific bit in
a specific operand register in a specific dynamic instruction.

gem5-Approxilyzer uses program analysis to systematically
analyze all error sites in the program and carefully picks
a small subset to perform selective error injections. gem5-
Approxilyzer employs error-pruning techniques (Section II-D)
to prune errors that need no detailed study by either predicting
their outcomes or showing them equivalent to other errors.
Thus, it can perform fewer error injections than a naı̈ve
error injection campaign while maintaining high accuracy in
predicting the impact of almost all errors in the program.

B. Inputs and Outputs of gem5-Approxilyzer
Figure 1 shows the inputs and outputs of gem5-Approxilyzer.

gem5-Approxilyzer takes as inputs (1) an application, (2)
inputs to the application, and (3) quality metrics to quantify
the deviation of the erroneous output from the error-free
program output. As an optional input, users can specify a
quality threshold that quantifies the maximum acceptable
degradation in output quality.

gem5-Approxilyzer

End-to-end Quality Metric
(domain-specific)

+

+
Quality Threshold (Optional)

Unmodified

Program
Comprehensive 
error outcome 

profile

Example error outcome 
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Fig. 1. Overview of gem5-Approxilyzer inputs and outputs.
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Res - Maybe, Approx - Maybe
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Fig. 2. A classification of error outcomes [25] and their implications for
approximation and resiliency.

gem5-Approxilyzer outputs a comprehensive error outcome
profile (simply referred to as an error profile) for the program. It
lists all the error sites in the program as well as the outcome of
an error (injected) at this error site, referred to as error outcome.
gem5-Approxilyzer distinguishes error outcomes as masked,
detected, or output corruptions (OCs). Instead of considering
all OCs as silent data corruptions (SDCs), gem5-Approxilyzer
analyzes the quality (degradation) of the corrupted outputs to
separate outcomes that are tolerable to the user from those that
are not. Figure 2 shows the various error outcome categories:
(1) Detected: An error that raises observable symptoms (e.g.,
fatal traps, segmentation faults, timeout etc.) that can be caught
using various low-cost detectors [6], [29]–[34] before the end
of execution. (2) DDC: An OC that is detectable via low-cost
mechanisms such as range detectors [35]. (3) SDC-Bad: An
OC with very large (unacceptable) output quality degradations.
(4) SDC-Maybe: An OC that may be tolerable if the output
quality degradation is within a user-provided quality threshold
(if no threshold is provided, all SDC-Maybe’s default to
SDC-Bad). (5) SDC-Good: An OC that produces negligibly
small (acceptable) output quality degradation. (6) Masked:
Errors that produce no OC.

Approxilyzer uses two different types of quality thresholds:
(1) obvious domain-specific thresholds for SDC-Good/SDC-
Bad/DDC categorization [25] and (2) user-specified quality
threshold to decide if an SDC-Maybe is acceptable. For
example, for financial applications, dollar outputs of negative
value are obvious DDC, and quality differences of less than
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one-hundredth of a cent could be assumed to be SDC-Good.
Beyond this, a user can optionally specify that for their
use-case, outputs within, say, 1 cent of the error-free value are
tolerable which will define if an SDC-Maybe is acceptable.

Thus, the error outcome associated with each error site is
composed of the error-outcome category as well as the output
quality degradation (QD) for OC class of errors. For the exam-
ple error site output shown in Figure 1, the error produces an
output corruption that is measured (using the quality metric pro-
vided, say, for example, average relative error) to have a quality
degradation of 4.25% from the error-free output. Because this
value is neither small enough to be labeled SDC-Good nor large
enough for SDC-Bad, the error outcome is categorized as SDC-
Maybe (in the absence of a user-specified quality threshold).

C. Use Cases of gem5-Approxilyzer

The application error profile that gem5-Approxilyzer
produces can be used by different techniques that trade
accuracy in the program output for gains in other system
parameters. We discuss two such techniques: low cost resiliency
and approximate computing. Based on the knowledge of the
output quality produced by perturbing each error site in the
program, gem5-Approxilyzer can help decide which error site
needs protection from transient errors, or alternatively, which
error sites could be approximable.

Figure 2 shows how various error categories can be can
be grouped or equalized based on whether the context is
resiliency analysis (Res) or approximate computing (Approx).
Masked (no quality degradation), SDC-Good (acceptable
quality degradation), DDC (caught by low-cost detectors
of output), and Detected (caught by low-cost detectors of
execution) error sites can be equalized together as error sites
that do not need expensive resiliency protection. SDC-Bad
error sites, on the other hand, need to be protected (hardened).
Similarly, in the context of approximate computing, Masked
and SDC-Good can be equalized together and considered
approximable, while DDC, Detected, and SDC-Bad error sites
produce egregious outputs and so are not approximable [25].

Decisions for SDC-Maybe outcomes can be made based on
the quality thresholds provided by the user. For example, if the
quality degradation of the SDC-Maybe is below the acceptable
quality threshold, then the error site need not be protected
and is considered approximable. In the absence of quality
thresholds, SDC-Maybe can be conservatively equalized with
SDC-Bad. The reasoning about individual error sites can be
extended to instructions (both dynamic and static) based on
the error outcome of their constituent error sites.

D. Pruning Techniques

Compared to a naı̈ve campaign that performs an error
injection for every error site, gem5-Approxilyzer dramatically
reduces the number of error injections to predict the error
outcome for all error sites. gem5-Approxilyzer implements
two sets of pruning techniques from prior work [25], [26]:
equivalence-based and known-outcome. This section briefly
describes these techniques; detailed explanations and examples
can be found in prior work [26].

Equivalence-based pruning techniques use program analysis
(static and dynamic) and heuristics to prune errors that are
likely equivalent to others. These techniques partition error sites
into equivalence classes, where each class requires an error
injection into just a single representative error site (called pilot)
to predict the error outcome for all other error sites in the class.
gem5-Approxilyzer implements two equivalence-based pruning
techniques. Control equivalence groups error sites based on
the observation that errors that propagate through similar code
sequences are likely to have similar error outcomes. This
technique records the next N branches for dynamic instances
of a given static instruction in the original execution (with no
error injection). Corresponding error sites of dynamic instances
that share the same control path (up to depth N) are grouped
in an equivalence class. Store equivalence is used to equalize
dynamic instances of store instructions (and instructions
that a store depends on within a basic block) based on the
observation that errors in a store instruction propagate through
the loads that read the erroneous value. This technique records
the subsequent loads that read from a store address and groups
(corresponding error sites of) dynamic instances of store
instructions that have the same list of subsequent loads together.

Known-outcome pruning techniques largely use static (and
some dynamic) program analyses to determine the outcome of
an error. gem5-Approxilyzer uses two known-outcome pruning
techniques. Address-bound pruning uses the observation
that single-bit errors that appear outside the address range
of an application result in Detected outcomes. Thus, their
outcomes are known a priori and these errors can be pruned.
Def-use pruning uses the observation that an injection in a
def is equivalent to an injection in the first use at the same
register and bit position, so only one needs to be explored.

By combining all these pruning techniques, gem5-
Approxilyzer can dramatically reduce the total number of error
sites that need error injections. In Section V-B, we validate
the effectiveness of these heuristics for both the resiliency and
approximate computing use cases.

III. GEM5-APPROXILYZER: IMPLEMENTATION

This section describes the implementation details and
associated challenges of gem5-Approxilyzer. We also briefly
discuss future extensions to the tool.

A. Error Model used in gem5-Approxilyzer

The error model we use is single-bit transient errors in
architectural registers. We study errors in bits of both source
and destination registers of instructions.

In this work, we undertake error injection in registers
of x86 macro-instructions. Modern CISC implementations
like x86 often implement the complex machine instructions
(macro-instructions) using low-level instructions called
micro-instructions or micro-operations. Micro-instructions are
generally specific and proprietary to the micro-architecture
and not faithfully recreated in publicly available simulators.
Hence, we restrict our analysis to macro-instructions.
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For this study, we only consider general-purpose registers
and SSE2 registers in x86. We do not inject errors in special-
purpose, status, and control registers (e.g., %rsp, %rbp, rflags)
to simplify our error model and reduce the number of error in-
jections required for a first-order analysis. We assume that these
always need protection and can be hardened in hardware (e.g.,
with ECC). We also do not inject in implicit3 registers in this
work. Extending gem5-Approxilyzer to support these registers
is relatively straightforward and we leave it to future work.

B. Implementation Details

To execute gem5-Approxilyzer end-to-end, the user provides
an application, its inputs, and associated quality metrics that
evaluate the application output. The user can optionally mark
the beginning and end of a code region of interest (ROI)
– either by annotating the source or providing static PCs
marking the beginning and end of the ROI – for analysis. In
the absence of an ROI, the full application is analyzed.

gem5-Approxilyzer executes four phases to produce an
application’s error profile.

(1) Phase 1 extracts static and dynamic properties of
instructions executed within the ROI. An instruction parser
module analyzes static instructions in the application’s
disassembly to identify registers used, determine if the
instruction affects control flow (jumps, conditional branches,
function calls, etc.), and identify any registers that contain
memory addresses (these are marked for address-bound
pruning). Information from this static pass is used to build the
def-use chains that are used by pruning techniques in Phase 2.
Next, gem5 is used to produce a full dynamic execution trace
of user-mode instructions and memory accesses. From this
trace, only the (dynamic) instructions that are found within
the static disassembly, along with their corresponding memory
accesses, are extracted for analysis; gem5-Approxilyzer does
not analyze external library code, system code, or calls to
them. gem5-Approxilyzer further simplifies the trace to only
contain the execution within the ROI (if an ROI is provided).

(2) Phase 2 prunes error sites as mentioned in Section II-D
by applying control- and store-equivalence as well as address-
bound and def-use techniques. gem5-Approxilyzer processes
the execution trace from Phase 1 to build control-equivalence
classes and def-use chains. The memory accesses recorded
in the trace are used to build store equivalence classes and
perform address-bound pruning. At the end of this phase,
gem5-Approxilyzer picks a pilot for each equivalence class
and creates the set of error sites for error injections.

(3) Phase 3 performs the error-injection experiments
using our error injector module built for gem5. The error
injector takes as input the error-site description: dynamic
instruction described using the cycle number of the simulation,
register information (register name and whether it is used as
a source/destination operand) and register bit number. The
error injector pauses the simulation at the specified dynamic

2The binaries we study do not explicitly use floating point stack registers
(st0-st7) in the region of interest and hence we do not study them.

3For example, the instruction imul rbx performs the following signed multipli-
cation: rdx :rax←−rax∗rbx. We only inject errors in rbx and not in rax and rdx.

instruction and flips the bit in the register. For source registers,
the bit flip is performed before the instruction execution. For
destination registers, the error is simulated by performing the
bit flip after the instruction execution (otherwise the error would
be overwritten by the instruction execution). The simulation
then proceeds, checking for any hangs and crashes, or other
symptoms to identify Detected outcomes. If no Detected
symptoms are encountered before the simulation ends, gem5-
Approxilyzer compares the generated output with the error-free
execution’s output. If there is an OC, gem5-Approxilyzer uses
the user-provided quality metric to evaluate the output quality.

(4) Phase 4 analyzes the outcome of each error injection
and assigns it the appropriate error outcome, i.e., error
outcome category and quality degradation (QD) score for OCs.
gem5-Approxilyzer then assigns the same error outcomes to
pruned error sites associated with the pilot, and finally outputs
the application’s comprehensive error profile containing all
the error sites and their corresponding error outcomes.

For an end-to-end error analysis with gem5-Approxilyzer,
the error injections in Phase 3 consume the most time –
several days worth of CPU time versus only few minutes/hours
consumed by all the other phases combined for the experiments
reported here. Thus, using effective pruning techniques that
can reduce the total number of error injections in Phase 3 is
the most direct means of reducing the tool’s analysis time.

C. x86 Implementation Challenges

While phases 3 and 4 are largely ISA independent, phases
1 and 2 require customization to support different ISAs.
Since x86 is a CISC ISA, opcode lengths vary, and hence
the instruction parser in Phase 1 must capture instruction
semantics correctly to identify source and destination operands
of different instructions. Depending on the complexity of the
macro-instructions, a varying number of micro-instructions
can be generated. Any memory accesses performed by these
micro-instructions in the gem5 memory trace must be mapped
to the correct macro-instruction. Since x86 allows for variable
register sizes, another challenge in Phase 2 is to correctly
associate registers of varying sizes with their aliased 64-bit
registers. This must be done carefully to identify aliased def-use
pairs which enables pruning the right set of error sites within
an aliased register. For example, %ax and %eax both alias
to %rax. While performing def-use pruning, only the lower 16
bits of %eax definition must be pruned if the first use is %ax.

D. Extensions to gem5-Approxilyzer

We designed gem5-Approxilyzer to be reasonably modular
(e.g., each phase in Section III-B is a separate module) to
enable future extensions to support different ISAs, error
models, and pruning techniques. This section briefly elaborates
on some details for future extensions.

The gem5 simulator currently supports many ISAs, and
gem5-Approxilyzer could support them with the following
modifications. 1) The instruction parser in Phase 1 must
be modified to capture the semantics of the new ISA. 2)
ISA-specific behaviors that affect control flow (e.g., branch
delay slots for SPARC) should be incorporated into the
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control-equivalence algorithm accordingly. 3) Register aliasing
must be captured correctly to track def-use pairs.

The error-injector module in Phase 3 can be modified to
support other error models such as multi-bit injections or injec-
tions to other system structures like DRAM. The error-pruning
module in Phase 2 would need to be extended to support
pruning algorithms appropriate for the chosen error model.

gem5-Approxilyzer performs Phase 2 analysis on the
dynamic trace generated by gem5 in Phase 1. For very long
executions, this may result in excessively long traces, requiring
a tighter coupling of phases 1 and 2 to trace and analyze parts
of the execution at a time.

IV. EXPERIMENTAL METHODOLOGY

A. Benchmarks and Quality Metrics
To evaluate gem5-Approxilyzer, we select five benchmarks

from three different benchmark suites spanning multiple
application domains. Table I shows the applications and inputs
used in our evaluation. We chose these inputs because recent
work has shown that performing error analysis on these inputs
is much faster and at least as accurate as for larger reference
inputs [36]. We use gem5 to simulate an Ubuntu-16.04 system,
and we use GCC 7.3 with -O3 to compile the applications.

To evaluate the quality degradation of the application’s
final output we use the following quality metrics: (1) Absolute
Maximum Difference [25] (in the dollar value outputs) for
the financial applications Blackscholes and Swaptions, (2)
Maximum Relative Error [25] for LU and Blackscholes, (3)
Relative L2 Norm [25] for FFT, and (4) Root Mean Square
Error [3] for Sobel. We use the same quality thresholds to
determine SDC-Good, SDC-Bad, and DDC as prior work [25].

TABLE I
BENCHMARKS, INPUTS, AND ERROR-SITE PRUNING BY TECHNIQUE (C:
CONTROL-EQUIVALENCE, S: STORE-EQUIVALENCE, C+S+K: TOTAL

PRUNING USING CONTROL, STORE, AND KNOWN-OUTCOME TECHNIQUES)

Application Input Error Sites Pruned Error
Total Remaining Sites (%)

Black- 21 options 232K 100K C: 12.24
scholes [37] S: 9.45

C+S+K: 56.77
Swaptions 1 option 10.3M 720K C: 52.47
[37] 1 simulation S: 7.85

C+S+K: 93.01
LU [38] 16x16 matrix 1.2M 268K C: 23.49

8x8 blocks S: 22.72
C+S+K: 77.91

FFT [38] 28 data points 4.4M 215K C: 43.99
S: 21.50
C+S+K: 95.05

Sobel [3] 81x121 pixels 85.3M 300K C: 62.74
S: 20.94
C+S+K: 99.65

B. Pruning Effectiveness
We measure the effectiveness of gem5-Approxilyzer by

observing how many error sites were pruned using the various
pruning techniques described in Section II-D. For each
application, we measure first the number of error sites in the
application’s region of interest and then the number of error
sites remaining after the pruning to calculate the number of

error sites that have been pruned. This metric evaluates the
tool’s effectiveness since the number of error sites pruned
directly reduces the number of error-injection experiments
needed to analyze the application. For the control heuristic,
we set depth to N=50, as in prior work [39].

C. gem5-Approxilyzer Validation

The control- and store-equivalence based pruning
techniques use heuristics and require validation. For a given
equivalence class, these pruning techniques choose a single
pilot to represent the error outcomes of all error sites in the
equivalence class (Section II-D). Similar to the methodology
used in prior work [25], [26], we quantify the validity of
these techniques by measuring the extent to which the pilots
correctly represent their equivalence classes.

The validation attempts to answer the following question:
how accurately does the error outcome of the pilot predict the
error outcome of the other error sites in its equivalence class?
For validating a single equivalence class, we perform error
injections in a sample of error sites (not including the pilot)
– called population – chosen randomly from the equivalence
class. We refer to individual error sites within a population
as population member(s). We calculate the prediction accuracy
of an equivalence class’s pilot, by measuring the number of
its population members that produce the same equalized error
outcome as the pilot.

Because the equalization of error outcome categories
(Section II-C) depends on whether the context of the analysis
is resiliency (Res) or approximation (Approx), we show the
validation outcomes for both these contexts separately. For
example, consider an equivalence class whose pilot X generates
a DDC. Suppose 86% of its population is DDC, 6% is Masked,
5% is SDC-Maybe, and 3% is Detected. Then the prediction
accuracy of pilot X for Res is 95% and for Approx is 89%.

SDC-Maybe error sites are equalized based on if their
output quality degradations (QD) are above or below user
specified output quality thresholds (QT). In the absence of
a quality threshold, prediction accuracy measurements for
any SDC-Maybe pilot with a quality degradation of, say, Q
measures the number of its population members that also result
in SDC-Maybe with the same quality degradation Q. Requiring
the output quality degradation of different SDC-Maybe error
sites within an equivalence class to exactly match is too strict,
so we use a flexibility parameter, δ , that allows a fine-grained
difference in the measured quality degradation [25]. Hence, if
the absolute difference in the quality degradation of an SDC-
Maybe pilot and an SDC-Maybe population member is less than
or equal to δ , we count it as a correct prediction. In the presence
of a user provided output quality threshold (QT), however, SDC-
Maybe error outcomes of the pilot and population members can
be appropriately equalized for resiliency and approximation.

To illustrate all of the above with an example, consider a
pilot Y that generates an SDC-Maybe with a QD-6 (quality
degradation of 6% using, for example, average relative
error as the quality metric). Suppose the error outcomes
of its population are as follows: (a) 84% of its population
is SDC-Maybe with QD-6, (b) 6% is SDC-Maybe with
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QD-3, (c) 5% is SDC-Maybe with QD-8, (d) 3% is Masked,
and (e) 2% is DDC. Then the validation accuracy of Y for
the different validation strategies is as follows: (1) Resδ=2
is 89%=84%+5%, (2) Approxδ=2 is 89%=84%+5%, (3)
Resδ=2,QT=7 is 100% (all are correct, even (c), which lies
above the QT, because its QD falls within the δ =2 margin of
the pilot), and (4) Approxδ=2,QT=7 is 98% ((e) is incorrect).

For each application, the overall validation accuracy for
a given equivalence based pruning technique (control, store,
or combined = control+store) is obtained by calculating the
average of the pilot prediction accuracy across a random sample
of equivalence classes built using that technique (control, store,
or combined), weighted by the size of the equivalence class.

We randomly pick 750 equivalence classes to validate
each of the control- and store-equivalence techniques (1500
equivalence classes for combined control+store). This gives us
a 99% confidence interval with a 5% error margin [40]. For
each equivalence class we set the population size to 750. If the
equivalence class size is less than 750 (error sites), then the pilot
is validated using all the remaining error sites in the equivalence
class. This again gives us a 99% confidence interval with a 5%
error margin [40]. In all, we perform approximately 1.6 million
error-injection experiments to validate gem5-Approxilyzer.

D. Error Analysis of Applications

As mentioned in Section II-C, an application’s error outcome
profile can be used for different purposes. For example,
gem5-Approxilyzer can be used to extract the set of static
instructions that need resiliency protection [36] or the set of
static instructions that are approximable under different output
quality requirements. Information about a static instruction
(called a PC) is derived by observing the error outcomes of
all the error-sites for all the dynamic instances of that static
instruction. For example, if all the error sites for a PC result
in Detected, Masked, or SDC-Good outcomes, we say that the
PC needs no resiliency protection against single-bit transient
errors. Similarly, if the PC has Detected error sites, we can
conclude it is not a candidate for approximation [25]. In our
evaluation, we assume a very conservative classification of the
PCs in our workload. If even a single error site for the PC needs
resiliency protection, or is not approximable, then the entire PC
is labeled as needing resiliency protection, or not approximable,
respectively. Different methodologies for composing error sites
within a PC are possible, e.g., error-site information can be
used to derive the probability of an output with unacceptable
quality degradation being generated by individual PCs.

For our workloads, we show the distribution of error sites in
the application by error outcomes. Furthermore, we compose
the error sites for a PC as described above to show the percent-
age of PCs in the application that need resiliency protection
against SDCs and the percentage of PCs that are candidates for
approximate computing under given output quality thresholds.

We use gem5-Approxilyzer to perform this error analysis
on our workloads compiled to x86 binary. We also analyze
the same workloads compiled to a SPARC binary with the
older implementation of Approxilyzer using Simics, which
allows us to perform an initial comparison of the resiliency
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Fig. 3. gem5-Approxilyzer validation for (a) control equivalence, (b) store
equivalence, and (c) combined (control + store) equivalence.

and approximation characteristics of the same workloads for
two different ISAs.

V. RESULTS

A. Pruning effectiveness

The last column of Table I shows the percentage of
error sites pruned by gem5-Approxilyzer using the control-
equivalence (C), store-equivalence (S), and known-outcome (K)
pruning techniques. At 56.77%, Blackscholes has the smallest
total (C+S+K) pruning. Blackscholes is a small application,
which coupled with our choice of a small input leads to a very
small execution footprint (as can be seen by the small number
of total error sites).This translates to few dynamic instructions
per static PC which leads to very small equivalence classes.
The average size of the equivalence class in Blackscholes is
just 1.96. Since the amount of pruning is directly proportional
to the size of the equivalence class, it is not surprising that
the pruning effectiveness for Blackscholes is limited. The
maximum pruning is achieved in Sobel, at 99.65%. Apart
from Blackscholes, all the other applications see a one to
two orders of magnitude reduction in the number of error
injections needed to comprehensively analyze them. Thus we
show that these pruning techniques are also effective for x86.

B. gem5-Approxilyzer Validation

Figures 3(a), 3(b), and 3(c) show the validation accuracy
for the control equivalence, store equivalence and their
combination respectively. On average, both control and store
equivalence techniques show high accuracy (>92%) for Res
and Approx with a flexible quality parameter δ =2 that uses
2% for Blackscholes, FFT, LU, and Sobel, while for the
financial applications, Blackscholes and Swaptions, uses the
absolute difference in the dollar value set to $0.01 (difference
of 1 cent or less). In brief, gem5-Approxilyzer is able to
correctly predict the output quality of the x86 application error
sites with very fine granularity (2% or within a single cent).
Swaptions (> 94%), LU (> 98.5%), and Sobel (> 99.9%)
show very high validation accuracy across the board.

While still relatively high, Blackscholes shows the
poorest validation accuracy for both control (Resδ=2 = 87%,
Approxδ=2 = 86%) and store (Resδ=2 = 78%, Approxδ=2
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using the x86 and SPARC ISAs.

= 79%). As mentioned before, Blackscholes has small
equivalence classes which can lead to poor prediction accuracy
even if a single error site is predicted incorrectly.

We observe that the pilots that have low prediction
accuracy in Blackscholes and FFT (and a few in Swaptions)
predominantly belong to two categories: (a) pilots are
SDC-Maybe and the populations also produce SDC-Maybe
but with quality degradations that have a wider range than
allowed by the δ and (b) pilots of equivalence classes that
have a mix of outcomes at the border of either SDC-Bad
and DDC or SDC-Maybe and SDC-Bad. More sophisticated
heuristics that combine control and data flow might capture
specific patterns in these applications more accurately and we
leave their exploration to future work. Across all applications,
we observe that pilots with Masked, SDC-Good, and Detected
outcomes show almost perfect (>99.9%) validation accuracy.

Both Blackscholes and FFT show an improvement (>90%)
when a user quality threshold is applied. For brevity we show
results for QT=5, but we performed this experiment with a
range of different QT values and observed a similarly high
validation accuracy. This implies that even for pilots that fail
to predict the quality at a fine granularity, the grouping of the
equivalence classes is sufficiently accurate to be used in many
realistic use cases. On average, we see that when a quality
threshold is supplied, the validation accuracy is > 97% for
both store and control heuristics (and hence their combination).

Hence, we show that the techniques used by gem5-
Approxilyzer are very accurate in characterizing the error
profiles for x86 applications.

C. Error Profiles for Different ISAs
Figure 4 compares the distribution of error outcomes (for

all the error sites) in each application for the x86 and SPARC
ISAs. The error outcome profiles of the same application
look rather different for the different ISAs. We note, however,
that some differences are expected due to the CISC vs. RISC
nature of the instructions as well as the fact that x86 uses
many more implicit registers (that we do not inject into)
compared to SPARC. The graph shows that SPARC has a
higher percentage of more egregious outcomes. For example,
while Blackscholes-x86 has many error sites that lead to
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SDC-Good, SDC-Maybe, and SDC-Bad outcomes, the error
outcomes in Blackscholes-SPARC produce such bad quality
output that they become DDCs. We leave a deeper analysis
of the causes for these differences to future work.

Figure 5 further shows the percentage of static instructions
that need resiliency protection and those that are approximable
for the same QT across the two ISAs. The wide differences
across the two ISAs and the lack of a clear trend further
underscore the importance of resiliency analysis tools
that can analyze applications at the binary level to devise
customized resiliency and approximation solutions for different
architectures. Source-code or IR-level error analysis may not
lead to the most optimized solutions.

VI. RELATED WORK

gem5-Approxilyzer re-implements the concepts from
Approxilyzer [25] and Relyzer [26] in gem5 [28] and the
x86 ISA. Other tools for resiliency analysis have used gem5
as their base simulator. For instance, MeRLiN [23] uses
GeFIN [41] (which is also a built on top of gem5) to simulate
micro-architectural injections in an x86 O3 CPU. It performs
fault pruning to accelerate statistical micro-architectural fault
injections and can provide fine-grained reliability estimates for
hardware structures as well as SDC vulnerability estimates for
software. gem5-Approxilyzer’s analysis is at the architectural
level, and its primary goal is not a statistical average or
probability but to determine precisely if/how an error in an
instruction impacts the final output.

GemFI [42] is another error-injection tool that operates
at the micro-architectural level, is built on top of gem5 and
supports both Alpha and x86 ISA. Other error-injection
tools, such as LLFI [19], analyze applications at the compiler
intermediate representation (IR) level. IR is ISA-independent
by design, so such an analysis would ideally hold regardless
of the hardware architecture. However, there may be a loss
in error site accuracy because IR still requires additional
transformations before producing the assembly [43].

FAIL* [20] performs ISA-level analysis. A benefit of
performing ISA-level injections is that the results provide
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instruction-level resiliency information. System designers can
then utilize these results to create soft error protection schemes
at the instruction level [44], [45]. FAIL* also uses gem5
and supports ARM but is limited to one pruning technique:
def-use analysis.

VII. CONCLUSION AND FUTURE WORK

We have presented gem5-Approxilyzer, an open-source
re-implementation of Approxilyzer for the gem5 simulation
environment. The goal of gem5-Approxilyzer is to enable
support for multiple ISAs in the future within an open-source
infrastructure. We start by supporting x86 in this work. We
show that gem5-Approxilyzer is both effective and highly
accurate in predicting the program’s final output quality in
the presence of soft errors in the execution. To additionally
motivate the need for such tools, we perform a preliminary
comparison of our workloads across two ISAs, x86 and
SPARC. The differences in the error profiles for the same
applications across ISAs further underscore the need for a
tool like gem5-Approxilyzer. Expanding gem5-Approxilyzer
to support different error models is part of our future work.
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