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Abstract
We propose a parallel program representation for heteroge-
neous systems, designed to enable performance portability
across a wide range of popular parallel hardware, including
GPUs, vector instruction sets, multicore CPUs and poten-
tially FPGAs. Our representation, which we call HPVM, is a
hierarchical dataflow graph with shared memory and vector
instructions. HPVM supports three important capabilities for
programming heterogeneous systems: a compiler interme-
diate representation (IR), a virtual instruction set (ISA), and
a basis for runtime scheduling; previous systems focus on
only one of these capabilities. As a compiler IR, HPVM aims
to enable effective code generation and optimization for het-
erogeneous systems. As a virtual ISA, it can be used to ship
executable programs, in order to achieve both functional
portability and performance portability across such systems.
At runtime, HPVM enables flexible scheduling policies, both
through the graph structure and the ability to compile indi-
vidual nodes in a program to any of the target devices on a
system. We have implemented a prototype HPVM system,
defining the HPVM IR as an extension of the LLVM compiler
IR, compiler optimizations that operate directly on HPVM
graphs, and code generators that translate the virtual ISA to
NVIDIA GPUs, Intel’s AVX vector units, and to multicore
X86-64 processors. Experimental results show that HPVMop-
timizations achieve significant performance improvements,
HPVM translators achieve performance competitive with
manually developed OpenCL code for both GPUs and vector
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hardware, and that runtime scheduling policies can make
use of both program and runtime information to exploit the
flexible compilation capabilities. Overall, we conclude that
the HPVM representation is a promising basis for achieving
performance portability and for implementing parallelizing
compilers for heterogeneous parallel systems.

CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems;

Keywords Virtual ISA, Compiler, Parallel IR, Heterogeneous
Systems, GPU, Vector SIMD

1 Introduction
Heterogeneous parallel systems are becoming increasingly
popular in systems ranging from portable mobile devices to
high-end supercomputers to data centers. Such systems are
attractive because they use specialized computing elements,
including GPUs, vector hardware, FPGAs, and domain-
specific accelerators, that can greatly improve energy ef-
ficiency, performance, or both, compared with traditional
homogeneous systems. A major drawback, however, is that
programming heterogeneous systems is extremely challeng-
ing at multiple levels: algorithm designers, application devel-
opers, parallel language designers, compiler developers and
hardware engineers must all reason about performance, scal-
ability, and portability across many different combinations
of diverse parallel hardware.

At a fundamental level, we believe these challenges arise
from three root causes: (1) diverse hardware parallelismmod-
els; (2) diverse memory architectures; and (3) diverse hard-
ware instruction sets. Some widely used heterogeneous sys-
tems, such as GPUs, partially address these problems by
defining a virtual instruction set (ISA) spanning one or more
families of devices, e.g., PTX for NVIDIA GPUs, HSAIL for
GPUs from several vendors and SPIR for devices running
OpenCL. Software can be shipped in virtual ISA form and
then translated to the native ISA for execution on a supported
device within the target family at install time or runtime,
thus achieving portability of “virtual object code” across the
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corresponding family of devices. Except for SPIR, which is
essentially a lower-level representation of the OpenCL lan-
guage, these virtual ISAs are primarily focused on GPUs
and do not specifically address other hardware classes, like
vector hardware or FPGAs. Moreover, none of these virtual
ISAs aim to address the other challenges, such as algorithm
design, language design, and compiler optimizations, across
diverse heterogeneous devices.

We believe that these challenges can be best addressed by
developing a single parallel program representation flexible
enough to support at least three different purposes: (1) A com-
piler intermediate representation, for compiler optimizations
and code generation for diverse heterogeneous hardware.
Such a compiler IR must be able to implement a wide range
of different parallel languages, including general-purpose
ones like OpenMP, CUDA and OpenCL, and domain-specific
ones like Halide and TensorFlow. (2) A virtual ISA, to allow
virtual object code to be shipped and then translated down
to native code for different heterogeneous system configu-
rations. This requirement is essential to enable application
teams to develop and ship application code for multiple de-
vices within a family. (3) A representation for runtime sched-
uling, to enable flexible mapping and load-balancing policies,
in order to accommodate static variations among different
compute kernels and dynamic variations due to external ef-
fects like energy fluctuations or job arrivals and departures.
We believe that a representation that can support all these
three capabilities could (in future) also simplify parallel algo-
rithm development and influence parallel language design,
although we do not explore those in this work.
In this paper, we propose such a parallel program repre-

sentation, Heterogeneous Parallel Virtual Machine (HPVM),
and evaluate it for three classes of parallel hardware: GPUs,
SIMD vector instructions, and multicore CPUs. (In ongoing
work, we are also targeting FPGAs using the same program
representation.) Our evaluation shows that HPVM can serve
all three purposes listed above: a compiler IR, a virtual ISA,
and a scheduling representation, as described below.
No previous system we know of can achieve all three pur-

poses, and most can only achieve one of the three. None of
the existing virtual ISAs — PTX, HSAIL, SPIR — can serve
as either compiler IRs (because they are designed purely
as executable instruction sets, not a basis for analysis or
transformation) or as a basis for flexible runtime scheduling
across a heterogeneous system (because they lack sufficient
flexibility to support this). No previous parallel compiler IR
we know of (for example, [9, 19, 29, 32, 36]) can be used as a
virtual ISA for shipping programs for heterogeneous systems
(as they are not designed to be fully executable representa-
tions, though some, like Tapir [32] for homogeneous shared
memory systems, could be extended to do so), and none can
be used as a parallel program representation for runtime
scheduling (because they are not retained after static transla-
tion to native code, which is a non-trivial design challenge).

The parallel program representation we propose is a hi-
erarchical dataflow graph with shared memory. The graph
nodes can represent either coarse-grain or fine-grain compu-
tational tasks, although we focus on moderately coarse-grain
tasks (such as an entire inner-loop iteration) in this work. The
dataflow graph edges capture explicit data transfers between
nodes, while ordinary load and store instructions express
implicit communication via shared memory. The graph is
hierarchical because a node may contain another dataflow
graph. The leaf nodes can contain both scalar and vector
computations. A graph node represents a static computation,
and any such node can be “instantiated” in a rectangular grid
of dynamic node instances, representing independent parallel
instances of the computation (in which case, the incident
edges are instantiated as well, as described later).

The hierarchical dataflow graphs naturally capture all the
important kinds of coarse- and fine-grain data and task par-
allelism in heterogeneous systems. In particular, the graph
structure captures coarse-grain task parallelism (including
pipelined parallelism in streaming computations); the graph
hierarchy captures multiple levels and granularities of nested
parallelism; the node instantiation mechanism captures ei-
ther coarse- or fine-grain SPMD-style data parallelism; and
explicit vector instructions within leaf nodes capture fine-
grain vector parallelism (this can also be generated by auto-
matic vectorization across independent node instances).
We describe a prototype system (also called HPVM) that

supports all three capabilities listed earlier. The system de-
fines a compiler IR as an extension of the LLVM IR [30] by
adding HPVM abstractions as a higher-level layer describing
the parallel structure of a program.
As examples of the use of HPVM as a compiler IR, we

have implemented two illustrative compiler optimizations,
graph node fusion and tiling, both of which operate directly
on the HPVM dataflow graphs. Node fusion achieves “kernel
fusion”, and the graph structure makes it explicit when it
is safe to fuse two or more nodes. Similarly (and somewhat
surprisingly), we find that the graph hierarchy is also an
effective and portable method to capture tiling of computa-
tions, which can be mapped either to a cache hierarchy or
to explicit local memories such as the scratchpads in a GPU.
To show the use of HPVM as a virtual ISA, we imple-

mented translators for NVIDIA GPUs (using PTX), Intel’s
AVX vector instructions, and multicore X86-64 host pro-
cessors using Posix threads. The system can translate each
HPVM graph node to one or more of these distinct target
architectures (e.g., a 6-node pipeline can generate 36 = 729
distinct code configurations from a single HPVM version).
Experimental comparisons against hand-coded OpenCL pro-
grams compiled with native (commercial) OpenCL compilers
show that the code generated by HPVM is within 22% of
hand-tuned OpenCL on a GPU (in fact, nearly identical in
all but one case), and within 7% of the hand-tuned OpenCL
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in all but one case on AVX. We expect the results to improve
considerably by further implementation effort and tuning.
Finally, to show the use of HPVM as a basis for runtime

scheduling, we developed a graph-based scheduling frame-
work that can apply a wide range of static and dynamic
scheduling policies that take full advantage of the ability to
generate different versions of code for each node. Although
developing effective scheduling policies is outside the scope
of this work, our experiments show that HPVM enables flex-
ible scheduling policies that can take advantage of a wide
range of static and dynamic information, and these policies
are easy to implement directly on the HPVM representation.

Overall, our contributions are as follows:
• We develop a parallel program representation (HPVM)
for heterogeneous parallel systems based on a hierar-
chical dataflow graph with side effects, which captures
essentially all the important kinds of task- and data-
parallelism on heterogeneous systems.

• We show that HPVM can be used as an effective paral-
lel compiler IR, that can support important optimiza-
tions like node fusion and tiling.

• We show that HPVM can be used to create an effec-
tive parallel virtual ISA for heterogeneous systems
by (a) using HPVM as a persistent representation of
programs, and (b) by implementing translators from
HPVM to three different classes of parallel hardware:
GPUs, vector SIMD, and multicore CPUs.

• We show that HPVM dataflow graphs can be used to
support flexible static and dynamic scheduling poli-
cies, that take full advantage of the ability to translate
individual HPVM graph nodes to multiple hardware.

• Finally, we implement HPVM on top of a widely used
compiler infrastructure, LLVM, which historically has
lacked any explicit support for heterogeneous parallel
systems in the LLVM IR, potentially contributing a
valuable new capability for the LLVM community.

2 HPVM Parallelism Abstractions
This section describes the Heterogeneous Parallel Virtual
Machine parallel program representation. The next section
describes a specific realization of Heterogeneous Parallel
Virtual Machine on top of the LLVM compiler IR.

2.1 Dataflow Graph
In HPVM, a program is represented as a host program plus
a set of one or more distinct dataflow graphs. Each dataflow
graph (DFG) is a hierarchical graph with side effects. Nodes
represent units of execution, and edges between nodes de-
scribe the explicit data transfer requirements. A node can
begin execution once it receives a data item on every one
of its input edges. Thus, repeated transfer of data items be-
tween nodes (if overlapped) yields a pipelined execution of
different nodes in the graph. The execution of the pipeline
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Figure 1. Non-linear Laplacian computation in HPVM

is initiated and terminated by host code that launches the
graph. For example, this mechanism can be used for stream-
ing computations on data streams, e.g., processing successive
frames in a video stream.
Nodes may access globally shared memory through load

and store instructions (“side-effects”), since hardware shared
memory is increasingly common across heterogeneous sys-
tems. These operations may result in implicit data transfers,
depending on the mapping of nodes to hardware compute
units and on the underlying memory system. Because of
these side effects, HPVM is not a “pure dataflow” model. Fig-
ure 1 shows the HPVM version of a Laplacian estimate com-
putation of a greyscale image, used as part of image process-
ing filters. This will be used as a running example. The figure
shows the components of the Laplacian as separate dataflow
nodes – Dilation Filter (DF), Erosion Filter
(EF) andLinear Combination (LC) – connected by
edges. The figure also shows the code for node LC, which
is standard LLVM IR except for the new intrinsic functions
named llvm.hpvm.*, explained later. Load/store instruc-
tions access shared memory, using pointers that must be
received explicitly from preceding nodes.

2.1.1 Dynamic Instances of Nodes and Edges
The dataflow graphs in HPVM can describe varying (data-
dependent) degrees of parallelism at each node. In particu-
lar, a single static dataflow node or edge represents multi-
ple dynamic instances of the node or edge, each executing
the same code with different index values. The dynamic in-
stances of a node are required to be independent of each
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other, so that each time a (static) node is executed on re-
ceiving a new set of data items, all dynamic instances of the
node may execute in parallel, similar to invoking a parallel
loop. The dynamic instances form an n-dimensional grid,
with integer indexes in each dimension, accessed via the
llvm.hpvm.getNodeInstanceID.* functions. Our
implementation allows up to three dimensions. For example,
the LC node in the example is replicated to havedimX ×dimY
instances, where dimX and dimY are computed at runtime.
Similarly, a static edge between two static nodes may repre-
sent multiple dynamic edges between dynamic instances of
the two nodes, as explained further in Section 2.1.3.

2.1.2 Dataflow Node Hierarchy
Each dataflow node in a DFG can either be a leaf node or an
internal node. An internal node contains a complete dataflow
graph, called a child graph, and the child graph itself can
have internal nodes and leaf nodes. In Figure 1, the node
Laplacian Estimate is an internal node, and its child
graph comprises the leaf nodes DF, EF, and LC.
A leaf node contains scalar and/or vector code, express-

ing actual computations. Dynamic instances of a leaf node
capture independent computations, and a single instance of
a leaf node can contain fine-grain vector parallelism. Leaf
nodes may contain instructions to query the structure of the
underlying dataflow graph, as described in Section 3.
Internal nodes describe the structure of the child graph.

The internal nodes are traversed by the translators to con-
struct a static graph and generate code for the leaf nodes
and edges (Section 4). One restriction of this model is that
the dataflow graph cannot be modified at runtime, e.g., by
data-dependent code, dynamically spawning new nodes; this
enables fully-static optimization and code generation at the
cost of some expressivity.
The grouping and hierarchy of parallelism has several

advantages. It helps express several different kinds of paral-
lelism in a compact and intuitive manner: coarse-grain task
(i.e., pipelined) parallelism via top-level nodes connected us-
ing dataflow edges; independent coarse- or fine-grained data
parallelism via dynamic instances of a single static node; and
fine-grained data parallelism via vector instructions within
single instances of leaf nodes. It provides a flexible and pow-
erful mechanism to express tiling of computations for mem-
ory hierarchy in a portable manner (Section 6.3). It enables
efficient scheduling of the execution of the dataflow graph
by grouping together appropriate sets of dataflow nodes.
For example, a runtime scheduler could choose to map a
single top-level (internal) node to a GPU or to one core of
a multicore CPU, instead of having to manage potentially
large numbers of finer-grain nodes. Finally, it supports a
high-degree of modularity by allowing separate compilation
of parallel components, represented as individual dataflow
graphs that can be composed into larger programs.

2.1.3 Dataflow Edges and Bindings
Explicit data movement between nodes is expressed with
dataflow edges. A dataflow edge has the semantics of copying
specified data from the source to the sink dataflow node,
after the source node has completed execution. Depending
onwhere the source and sink nodes are mapped, the dataflow
edge may be translated down to an explicit copy between
compute units, or communication through shared memory,
or simply a local pointer-passing operation.
As with dataflow nodes, static dataflow edges also repre-

sent multiple dynamic instances of dataflow edges between
the dynamic instances of the source and the sink dataflow
nodes. An edge can be instantiated at runtime using one of
two simple replication mechanisms: “all-to-all”, where all
dynamic instances of the source node are connected with
all dynamic instances of the sink node, thus expressing a
synchronization barrier between the two groups of nodes,
or “one-to-one” where each dynamic instance of the source
dataflow node is connected with a single corresponding in-
stance of the sink node. One-to-one replication requires that
the grid structure (number of dimensions and the extents in
each dimension) of the source and sink nodes be identical.
Figure 1 shows the dataflow edges describing the data

movement of input image I , dilated image Id , eroded image
Ie , and matrix B between dataflow nodes. Some edges (e.g.,
inputB to nodeLaplacian Estimate) are “fixed” edges:
their semantics is as if they repeatedly transfer the same data
for each node execution. In practice, they are treated as a
constant across node executions, which avoids unnecessary
data transfers (after the first execution on a device).

In an internal node, the incoming edges may provide the
inputs to one or more nodes of the child graph, and con-
versely with the outgoing edges, such as the inputs I and
B and output L of node Laplacian Estimate. Seman-
tically, these represent bindings of input and output values
and not data movement. We show these as undirected edges.

2.2 Vector Instructions
The leaf nodes of a dataflow graph can contain explicit vector
instructions, in addition to scalar code. We allow parametric
vector lengths to enable better performance portability, i.e.,
more efficient execution of the same HPVM code on various
vector hardware. The vector length for a relevant vector type
need not be a fixed constant in the HPVM code, but it must
be a translation-time constant for a given vector hardware
target. This means that the parametric vector types simply
get lowered to regular, fixed-size vector types during native
code generation. Figure 1 shows an example of parametric
vector length (%vl) computation and use.

Evaluating the effect of parametric vector lengths on per-
formance is out of the scope of this paper because we only
support one vector target (Intel AVX) for now. Moreover,
in all the benchmarks we evaluate, we find that vectorizing
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Hardware feature Typical HPVM representation
Heterogeneous multiprocessor system
Major hardware compute units, e.g., CPU cores, GPUs Top-level nodes in the DFG and edges between them

GPUs
GPU Threads DFG leaf nodes
GPU Thread Blocks Parent nodes of DFG leaf nodes
Grid of Thread Blocks (SMs) Either same as GPU Thread Blocks or parent node of DFGs representing thread blocks
GPU registers, private memory Virtual registers in LLVM code for leaf nodes
GPU Scratch-pad Memory Memory allocated in DFG internal nodes representing thread blocks
GPU Global Memory and GPU Constant Memory Other memory accessed via loads and stores in DFG leaf nodes

Short-vector SIMD instructions

Vector instructions with independent operations Dynamic instances of first-level internal nodes, and/or Vector code in leaf nodes
Vector instructions with cross-lane dependences Vector code in leaf nodes
Vector registers Virtual registers in LLVM code for leaf nodes

Homogeneous host multiprocessor

CPU threads in a shared-memory multiprocessor One or more nodes in one or more DFGs
Shared memory Memory accessed via loads and stores in DFG leaf nodes. HPVM intrinsics for synchronization.

Table 1. How HPVM represents major parallel hardware features

across dynamic instances of a leaf node is more effective
than using explicit vector code, as explained in Sections 4.2.2
and 7.2. More complex vector benchmarks, however, may
benefit from the explicit vector instructions.
2.3 Integration with Host Code
Each HPVM dataflow graph is “launched” by a host program,
which can use launch and wait operations to initiate ex-
ecution and block for completion of a dataflow graph. The
graph execution is asynchronous, allowing the host program
to run concurrently and also allowing multiple independent
dataflow graphs to be launched concurrently. The host code
initiates graph execution by passing initial data during the
launch operation. It can then sustain a streaming graph com-
putation by sending data to input graph nodes and receiving
data from output nodes. The details are straightforward and
are omitted here.

2.4 Discussion
An important consideration in the design of HPVM is to
enable efficient mapping of code to key features of various
target hardware. We focus on three kinds of parallel hard-
ware in this work: GPUs, vectors, and multithreaded CPUs.
Table 1 describes which HPVM code constructs are mapped
to the key features of these three hardware families. This
mapping is the role of the translators described in Section 4.
The table is a fairly comprehensive list of the major hardware
features used by parallel computations, showing that HPVM
is effective at capturing different kinds of hardware.

3 HPVM Virtual ISA and Compiler IR
We have developed a prototype system, also called HPVM,
including a Compiler IR, a Virtual ISA, an optimizing com-
piler, and a runtime scheduler, all based on the HPVM rep-
resentation The compiler IR is an extension of the LLVM

IR, defined via LLVM intrinsic functions, and supports both
code generation (Section 4) and optimization (Section 6) for
heterogeneous parallel systems. The virtual ISA is essen-
tially just an external, fully executable, assembly language
representation of the compiler IR.
We define new instructions for describing and querying

the structure of the dataflow graph, for memorymanagement
and synchronization, as well as for initiating and terminating
execution of a graph. We express the new instructions as
function calls to newly defined LLVM “intrinsic functions.”
These appear to existing LLVM passes simply as calls to
unknown external functions, so no changes to existing passes
are needed.

The intrinsic functions used to define the HPVM compiler
IR and virtual ISA are shown in Table 2 (except host intrinsics
for initiating and terminating graph execution). The code
for each dataflow node is given as a separate LLVM function
called the “node function,” specified as function pointer F for
intrinsics llvm.hpvm.createNode[1D,2D,3D]. The
node function may call additional, “auxiliary” functions. The
incoming dataflow edges and their data types are denoted by
the parameters to the node function. The outgoing dataflow
edges are represented by the return type of the node func-
tion, which must be an LLVM struct type with zero or more
fields (one per outgoing edge). In order to manipulate or
query information about graph nodes and edges, we repre-
sent nodes with opaque handles (pointers of LLVM type i8*)
and represent input and output edges of a node as integer
indices into the list of function arguments and into the return
struct type.

The intrinsics for describing graphs can only be “executed”
by internal nodes; all these intrinsics are interpreted by the
compiler at code generation time and erased, effectively fixing
the graph structure. (Only the number of dynamic instances
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Intrinsics for Describing Graphs
i8* llvm.hpvm.createNode1D(Function* F, i32 n) Create node with n dynamic instances executing node function F (similarly

llvm.hpvm.createNode2D/3D)
void llvm.hpvm.createEdge(i8* Src, i8* Dst,

i32 sp, i32 dp, i1 ReplType, i1 Stream) Create edge from output sp of node Src to input dp of node Dst
void llvm.hpvm.bind.input(i8* N, i32 ip,

i32 ic, i1 Stream)
Bind input ip of current node to input ic of child node N;

void llvm.hpvm.bind.output(i8* N, i32 op,
i32 oc, i1 Stream)

Bind output oc of child node N to output op of the current node;

Intrinsics for Querying Graphs
i8* llvm.hpvm.getNode() Return a handle to the current dataflow node
i8* llvm.hpvm.getParentNode(i8* N): Return a handle to the parent of node N
i32 llvm.hpvm.getNodeInstanceID.[xyz](i8* N): Get index of current dynamic node instance of node N in dimension x, y or z.
i32 llvm.hpvm.getNumNodeInstances.[xyz](i8* N) Get number of dynamic instances of node N in dimension x, y or z
i32 llvm.hpvm.getVectorLength(i32 typeSz) Get vector length in target compute unit for type size typeSz
Intrinsics for Memory Allocation and Synchronization
i8* llvm.hpvm.malloc(i32 nBytes) Allocate a block of memory of size nBytes and return pointer to it
i32 llvm.hpvm.xchg(i32, i32), i32
llvm.hpvm.atomic.add(i32*, i32), . . .

Atomic-swap, atomic-fetch-and-add, etc., on shared memory locations

void llvm.hpvm.barrier(): Local synchronization barrier across dynamic instances of current leaf node

Table 2. Intrinsic functions used to implement the HPVM internal representation. iN is the N -bit integer type in LLVM.

of a node can be varied at runtime.) All other intrinsics are
executable at run-time, and can only be used by leaf nodes
or by host code.

Most of the intrinsic functions are fairly self-explanatory
and their details are omitted here for lack of space. A
few less obvious features are briefly explained here. The
llvm.hpvm.createEdge intrinsic takes a one bit argu-
ment, ReplType, to choose a 1-1 or all-to-all edge, and an-
other, Stream to choose an ordinary or an invariant edge.
The Stream argument to each of the bind intrinsics is
similar. The intrinsics for querying graphs can be used by
a leaf node to get information about the structure of the
graph hierarchy and the current node’s position within it,
including its indices within the grid of dynamic instances.
llvm.hpvm.malloc allocates an object in global mem-
ory, shared by all nodes, although the pointer returned must
somehow be communicated explicitly for use by other nodes.
llvm.hpvm.barrier only synchronizes the dynamic in-
stances of the node that executes it, and not all other concur-
rent nodes. In particular, there is no global barrier operation
in HPVM, but the same effect can be achieved by merging
dataflow edges from all concurrent nodes.

Finally, using LLVM functions for node code makes HPVM
an “outlined” representation, and the function calls interfere
with existing intraprocedural optimizations at node bound-
aries. We are working on adding HPVM information within
LLVM IR without outlining, using a new LLVM extension
mechanism.

4 Compilation Strategy
We only briefly describe the key aspects of the compilation
strategy for lack of space.

4.1 Background
We begin with some background on how code generation
works for a virtual instruction set, shown for HPVM in Fig-
ure 2. At the developer site, front-ends for one or more
source languages lower source code into the HPVM IR. One
or more optimizations may be optionally applied on this
IR, to improve program performance, while retaining the
IR structure and semantics. The possibly optimized code is
written out in an object code or assembly language format,
using the IR as a virtual ISA, and shipped to the user site (or
associated server). A key property of HPVM (like LLVM [21])
is that the compiler IR and the virtual ISA are essentially
identical. Once the target hardware becomes known (e.g.,
at the user site or server), the compiler backend is invoked.
The backend traverses the Virtual ISA and uses one or more
target-ISA-specific code generators to lower the program to
executable native code.

Hardware vendors provide high-quality back ends for in-
dividual target ISAs, which we can often leverage for our
system, instead of building a complete native back-end from
scratch for each target. We do this for the PTX ISA on
NVIDIA GPUs, AVX vector ISA for Intel processors, and
X86-64 ISA for individual threads on Intel host processors.

In this paper, we focus on using HPVM for efficient code
generation (this section) and optimizations (section 6). We
leave front ends for source languages for future work. Note
that we do rely on a good dataflow graph (representing par-
allelism, not too fine-grained nodes, good memory organiza-
tion) for good code generation. This need can be met with a
combination of parallelism information from suitable paral-
lel programming languages (such as OpenMP or OpenCL),
combined with the graph optimizations at the HPVM level,
described in Section 6. We do not rely on precise static data
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Figure 2. Overview of compilation flow for HPVM.

dependence analysis or precise knowledge of data transfers
or memory accesses, which is important because it means
that we can support irregular or data-dependent parallelism
and access patterns effectively.

4.2 HPVM Compilation Flow
The HPVM compilation flow follows the structure shown
in Figure 2. The compiler invokes separate back-ends, one
for each target ISA. Each back end performs a depth-first
traversal of the dataflow graph, maintaining the invariant
that code generation is complete for all children in the graph
hierarchy of a node, N , before performing code generation
for N . Each back end performs native code generation for
selected nodes, and associates each translated node with a
host function that implements the node’s functionality on
the target device.
We have implemented back ends for three target ISAs:

PTX (GPU), AVX (Vector), and X86-64 (CPU). Each backend
emits a device-specific native code file that includes a device
specific function per translated node. For now, we use sim-
ple annotations on the node functions to specify the target
compute unit manually, where the annotation may specify
one or more of GPU,Vector,CPU, defaulting to CPU. The
following subsections describe each back end briefly.

4.2.1 Code Generation for PTX
The PTX [27] backend builds on the existing NVPTX back-
end in LLVM. This back end translates an extended version of
the LLVM IR called NVVM (containing PTX-specific intrinsic
functions) [28] into PTX assembly.

A node annotated for GPU will usually contain a two-level
or three-level DFG, depending on whether or not the com-
putation must be tiled, as shown in Table 1 and explained in
Section 6.3. Our translator for PTX takes as input the inter-
nal node containing this DFG. It generates an NVVM kernel

function for each leaf node, which will execute the dynamic
instances of the leaf node. If the DFG is a three-level graph,
and the second (thread block) level node contains an alloca-
tion node (defined as a leaf node that allocates memory using
the llvm.hpvm.malloc intrinsic), the allocated memory
is assigned to scratchpad memory, as explained in Section 6.3.
All other memory is allocated by the translator to GPU global
memory or GPU constant memory. The generated NVVM
kernel is translated to PTX by the NVPTX back-end. Our
translator also generates code to use the NVIDIA OpenCL
runtime to load and run the PTX assembly of the leaf node
on the GPU. This code is the host function associated with
the input dataflow node on the GPU.

4.2.2 Code Generation for AVX
Dynamic instances of leaf nodes are independent, making
it possible to vectorize across node instances. We leverage
Intel’s translator from SPIR [20] to AVX, which is part of
Intel’s OpenCL runtime system, for two reasons: it recog-
nizes and utilizes the independence of SPIR work items to
produce vector parallelism, and it is well tuned to produce
efficient code for the AVX instruction set. Instead of writ-
ing our own AVX code-generator directly from HPVM with
these sophisticated capabilities, we instead wrote a translator
that converts HPVM code to SPIR, in which the dynamic
instances of leaf nodes become SPIR work items. The SPIR
code is then vectorized for AVX by Intel’s translator. Our
translator also creates the necessary host function to initiate
the execution of the SPIR kernel.

4.2.3 Host Code Generation
The x86 backend is invoked last, and generates the following:

• Native code for all nodes annotated as CPU nodes. We
build upon the LLVM X86 backend for regular LLVM
IR, adding support for HPVM query intrinsics. We
translate createNode operations to loops enumer-
ating the dynamic instances, and dataflow edges to
appropriate data transfers (section 4.2.4).

• For nodes with multiple native versions, i.e. annotated
with more than one target, a wrapper function that
invokes the HPVM runtime scheduler (section 5) to
choose which target function to execute on every in-
vocation.

• Host-side coordination code, enforcing the order of
execution dictated by the dataflow graph.

• Code to initiate and terminate execution of each
dataflow graph.

4.2.4 Data Movement
Code generation for dataflow edges is performed as part of
translating the internal dataflow node containing the edge.
When the source and sink node execute on the same com-
pute unit, or if they execute on two different compute units
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that share memory, passing a pointer between the nodes is
enough. Such pointer passing is safe even with copy seman-
tics: a dataflow edge implies that the source node must have
completed execution before the sink node can begin, so the
data will not be overwritten once the sink begins execution.
(Pointer passing may in fact not be the optimal strategy, e.g.,
on NVIDIA’s Unified Virtual Memory. We are developing a
more effective optimization strategy for such systems.)

Some accelerators including many GPUs and FPGAs, only
have private address spaces and data needs to be explicitly
transferred to or from the accelerator memory. In such cases,
we generate explicit data copy instructions using the accel-
erator API, e.g., OpenCL for GPUs.

It is important to avoid unnecessary data copies between
devices for good performance. To that end, we allow explicit
attributes in, out, and inout on node arguments, and only
generate the specified data movement. Achieving the same
effect without annotations would require an interprocedural
May-Mod analysis [1] for pointer arguments, which we aim
to avoid as a requirement for such a key optimization.

5 HPVM Runtime and Scheduling
Framework

Some features of our translators require runtime support.
First, when global memory must be shared across nodes
mapped to devices with separate address spaces, the trans-
lator inserts calls to the appropriate accelerator runtime
API (e.g., the OpenCL runtime) to perform the copies. Such
copies are sometimes redundant, e.g., if the data has already
been copied to the device by a previous node execution. The
HPVM runtime includes a conceptually simple “memory
tracker” to record the locations of the latest copy of data
arrays, and thus avoid unnecessary copies.

Second, streaming edges are implemented using buffering
and different threads are used to perform the computation of
each pipeline stage. The required buffers, threads, and data
copying are managed by the runtime.

Finally, the runtime is invoked when a runtime decision is
required about where to schedule the execution of a dataflow
node with multiple translations. We use a run-time policy
to choose a target device, based on the dataflow node iden-
tifier, the data item number for streaming computations,
and any performance information available to the runtime.
(Data item numbers are counted on the host: 0 or higher in
a streaming graph, −1 in a non-streaming graph.) This basic
framework allows a wide range of scheduling policies. We
have implemented a few simple static and dynamic policies:

1. Static Node Assignment: Always schedule a dataflow
node on a fixed, manually specified target, so the target
depends only on the node identifier.

2. Static Data Item Assignment: Schedule all nodes of a
graph for a particular input data item on a single target,
so the target depends only on the data item number.

3. Dynamic: A dynamic policy that uses the node identi-
fier as in policy #1 above, plus instantaneous availabil-
ity of each device: when a specified device is unavail-
able, it uses the CPU instead.

We leave it to future work to experiment with more so-
phisticated scheduling policies within the framework. In this
paper, we simply aim to show that we offer the flexibility to
support flexible runtime scheduling decisions. For example,
the second and third policies above could use a wide range
of algorithms to select the target device per data item among
all available devices. The key to the flexibility is that HPVM
allows individual dataflow graph nodes to be compiled to
any of the targets.

6 Compiler Optimization
An important capability of a compiler IR is to support ef-
fective compiler optimizations. The hierarchical dataflow
graph abstraction enables optimizations of explicitly parallel
programs at a higher (more informative) level of abstrac-
tion than a traditional IR (such as LLVM and many others),
that lacks explicitly parallel abstractions; i.e., the basic in-
trinsics, createNode*, createEdge*, bind.input,
bind.output, getNodeInstanceID.*, etc., are di-
rectly useful for many graph analyses and transformations.
In this section, we describe a few optimizations enabled by
the HPVM representation. Our long term goal is to develop
a full-fledged parallel compiler infrastructure that leverages
the parallelism abstractions in HPVM.

6.1 Node Fusion
One optimization we have implemented as a graph transfor-
mation is Node Fusion. It can lead to more effective redun-
dancy elimination and improved temporal locality across
functions, reduced kernel launch overhead on GPUs, and
sometimes reduced barrier synchronization overhead. Fus-
ing nodes, however, can hurt performance on some devices
because of resource constraints or functional limitations. For
example, each streaming multiprocessor (SM) in a GPU has
limited scratchpad memory and registers, and fusing two
nodes into one could force the use of fewer thread blocks,
reducing parallelism and increasing pressure on resources.
We use a simple policy to decide when to fuse two nodes; for
our experiments, we provide the node identifiers of nodes
to be fused as inputs to the node fusion pass. We leave it
to future work to develop a more sophisticated node fusion
policy, perhaps guided by profile information or autotuning.

Two nodes N 1 and N 2 are valid node fusion candidates if:
(1) they both are (a) leafs, or (b) internal nodes containing an
optional allocation node (see Section 4.2.1) and a single other
leaf node (which we call the compute node); (2) they have the
same parent, target, dimensions and size in each dimension,
and, if they are internal nodes, so do their compute nodes
and their optional allocation nodes; and (3) they are either
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concurrent (no path of edges connects them), or they are
connected directly by 1-1 edges and there is no data transfer
between N 1’s compute and N 2’s allocation node, if any.
The result is a fused node with the same internal graph

structure, and with all incoming (similarly, outgoing) edges
of N 1 and N 2, except that edges connecting N 1 and N 2 are
replaced by variable assignments.
Note that fusing nodes may reduce parallelism, or may

worsen performance due to greater peak resource usage.
Nodes that have been fused may need to be split again due to
changes in program behavior or resource availability, but fus-
ing nodes loses information about the two original dataflow
nodes. More generally, node splitting is best performed as a
first-class graph transformation, that determines what split-
ting choices are legal and profitable. We leave this transfor-
mation to future work.

6.2 Mapping Data to GPU Constant Memory
GPU global memory is highly optimized (in NVIDIA GPUs)
for coalescing of consecutive accesses by threads in a thread
block: irregular accesses can have orders-of-magnitude lower
performance. In contrast, constant memory is optimized for
read-only data that is invariant across threads and is much
more efficient for thread-independent data.
The HPVM translator for GPUs automatically identi-

fies data that should be mapped to constant memory. The
analysis is trivial for scalars, but also simple for array ac-
cesses because of the HPVM intrinsics: for array index
calculations, we identify whether they depend on (1) the
getNodeInstanceId.* intrinsics, which is the sole
mechanism to express thread-dependent accesses, or (2)
memory accesses. Those without such dependencies are uni-
form and are mapped to constant memory, and the rest to
GPU global memory. The HPVM translator identified such
candidates in 3 (spmv, tpacf, cutcp) out of 7 benchmarks ,
resulting in 34% performance improvement in tpacf and no
effect on performance of the other two benchmarks.

6.3 Memory Tiling
The programmer, an optimization pass or a language front-
end can “tile” the computation by introducing an additional
level in the dataflow graph hierarchy. The (1D, 2D or 3D)
instances of a leaf node would become a single (1D, 2D or
3D) tile of the computation. The (1D, 2D or 3D) instances of
the parent node of the leaf node would become the (1D, 2D
or 3D) blocks of tiles.
Memory can be allocated for each tile using the

llvm.hpvm.malloc intrinsic in a single allocation node
(see Section 4.2.1), which passes the resulting pointer to all
instances of the leaf node representing the tile. This memory
would be assigned to scratchpad memory on a GPU or left
in global memory and get transparently cached on the CPU.

In this manner, a single mechanism, an extra level in the hi-
erarchical dataflow graph, represents both tiling for scratchpad

memory on the GPU and tiling for cache on the CPU, while
still allowing device-specific code generators or autotuners
to optimize tile sizes separately. On a GPU, the leaf node
becomes a thread block and we create as many thread blocks
as the dimensions of the parent node. On a CPU or AVX
target, the code results in a loop nest with as many blocks
as the dimensions of the parent node, of tiles as large as the
dimensions of the leaf node.
We have used this mechanism to create tiled versions of

four of the seven Parboil benchmarks evaluated in Section 7.
The tile sizes are determined by the programmer in our
experiments. For the three benchmarks (sgemm, tpacf,
bfs) for which non-tiled versions were available, the tiled
versions achieved a mean speedup of 19x on GPU and 10x on
AVX, with sgemm getting as high as 31x speedup on AVX.

7 Evaluation
We evaluate the HPVM virtual ISA and compiler IR by exam-
ining several questions: (1) Is HPVM performance-portable:
canwe use the same virtual object code to get “good” speedups
on different compute units, and how close is the performance
achieved by HPVM compared with hand-written OpenCL
programs? (2) Does HPVM enable flexible scheduling of the
execution of target programs? (3) Does HPVM enable effec-
tive optimizations of target programs?

7.1 Experimental Setup and Benchmarks
We define a set of C functions corresponding to the HPVM
intrinsics and use them to write parallel HPVM applications.
We modified the Clang compiler to generate the virtual ISA
from this representation. We translated the same HPVM
code to two different target units: the AVX instruction set
in an Intel Xeon E5 core i7 and a discrete NVIDIA GeForce
GTX 680 GPU card with 2GB of memory. The Intel Xeon
also served as the host processor, running at 3.6 GHz, with 8
cores and 16 GB RAM.

For the performance portability and hand-coded compar-
isons, we used 7OpenCL applications from the Parboil bench-
mark suite [33]: Sparse Matrix Vector Multiplication (spmv),
Single-precision Matrix Multiplication (sgemm), Stencil PDE
solver (stencil), Lattice-Boltzmann (lbm), Breadth-first search
(bfs), Two Point Angular Correlation Function (tpacf), and
Distance-cutoff Coulombic Potential (cutcp).

In the GPU experiments, our baseline for comparison is the
best available OpenCL implementation. For spvm, sgemm,
stencil, lbm, bfs and cutcp, that is the Parboil version labeled
opencl_nvidia, which has been hand-tuned for the Tesla
NVIDIA GPUs [22]. For tpacf, the best is the generic Parboil
version labeled opencl_base. We further optimized the
codes by removing unnecessary data copies (bfs) and global
barriers (tpacf, cutcp). All the applications are compiled using
NVIDIA’s proprietary OpenCL compiler.
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In the vector experiments, with the exception of stencil
and bfs, our baseline is the same OpenCL implementations
we chose as GPU baselines, but compiled using the Intel
OpenCL compiler, because these achieved the best vector
performance as well. For stencil, we used opencl_base in-
stead, as it outperformedopencl_nvidia. For bfs, we also
used opencl_base, as opencl_nvidia failed the cor-
rectness test. The HPVM versions were generated to match
the algorithms used in the OpenCL versions, and that was
used for both vector and GPU experiments.
We use the largest available input for each benchmark,

and each data point we report is an average of ten runs.

7.2 Portability and Comparison with Hand Tuning
Figures 3 and 4 show the execution time of these applications
on GPU and vector hardware respectively, normalized to the
baselines mentioned above. Each bar shows segments for
the time spent in the compute kernel (Kernel), copying data
(Copy) and remaining time on the host. The total execution
time for the baseline is shown above the bar.
Compared to the GPU baseline, HPVM achieves near

hand-tuned OpenCL performance for all benchmark except
bfs, where HPVM takes 22% longer. The overhead is be-
cause our translator is not mature enough to generate global
barriers on GPU, and thus HPVM version is based on a
less optimized algorithm that issues more kernels than the
opencl_nvidia version, incurring significant overhead.
In the vector case, HPVM achieves performance close to the
hand-tuned baseline in all benchmarks except lbm. In this
case, the vector code generated from the Intel OpenCL com-
piler after our SPIR backend is significantly worse that the
one generated directly from OpenCL - we are looking into
the cause of this.

Note that although HPVM is a low-level representation, it
requires less information to achieve performance on par with
OpenCL, e.g., details of data movement need not be specified,
nor distinct command queues for independent kernels. The
omitted details can be decided by the compiler, scheduler,
and runtime instead of the programmer.

7.3 Evaluation of Flexible Scheduling
We used a six-stage image processing pipeline, Edge De-
tection in grey scale images, to evaluate the flexibility that
HPVM provides in scheduling the execution of programs
consisting of many dataflow nodes. The application accepts
a stream of grey scale images, I , and a fixed mask B and
computes a stream of binary images, E, that represent the
edges of I . We feed 1280x1280 pixel frames from a video as
the input and measure the frame rate at the output. This
pipeline is natural to express in HPVM. The streaming edges
and pipeline stages simply map to key features of HPVM,
and the representation is similar to the code presented in

Figure 1. In contrast, expressing pipelined streaming paral-
lelism in OpenCL, PTX, SPIR or HSAIL, although possible, is
extremely awkward, as explained briefly in Section 8.

Expressing this example in HPVM allows for flexibly map-
ping each stage to one of three targets (GPU, vector or a
CPU thread), for a total of 36 = 729 configurations, all gen-
erated from a single HPVM code. Figure 5 shows the frame
rate of 7 such configurations. The figure shows that HPVM
can capture pipelined, streaming computations effectively
with good speedups. More importantly, however, the experi-
ment shows that HPVM is flexible enough to allow a wide
range of static mapping configurations with very different
performance characteristics from a single code.

To show the flexibility for dynamic scheduling, we emulate
a situation where the GPU becomes temporarily unavailable,
by using a thread to toggle a boolean variable indicating
availability. This can arise, e.g., for energy conservation in
mobile devices, or if a rendering task arrives with higher
priority. When the GPU becomes unavailable, kernels that
have already been issued will run to completion but no new
jobs can be submitted to it. We choose to have the GPU
available for intervals of 2 seconds out of every 8 seconds,
because the GPU in our system is far faster than the CPU.
In this environment, we execute the Edge Detection

pipeline using the three different scheduling policies de-
scribed in Section 5. Figure 6 shows the instantaneous frame
rate for each policy. Green and red sections show when the
GPU is available or not respectively. We truncate the Y-axis
because the interesting behavior is at lower frame rates; the
suppressed peak rates are about 64 frame/s.
Static node assignment policy makes no progress during

the intervals when the GPU is not available. The other two
policies are able to adapt and make progress even when the
GPU is unavailable, though neither is perfect. Static data
item assignment policy may or may not continue executing
when the GPU is unavailable, depending on when the data
items that will be issued to the GPU are processed. Also, it
may have low frame rate when the GPU is available, if data
items that should be processed by the CPU execute while
the GPU is available. Dynamic policy will not start using the
GPU to execute a dataflow node for a data item until the node
is done for the previous data item. That is why the frame
rate does not immediately increase to the maximum when
the GPU becomes available. The experiment shows HPVM
enables flexible scheduling policies that can take advantage
of static and dynamic information, and these policies are easy
to implement directly on the HPVM graph representation.
We also used the Edge Detection code to evaluate the

overhead of the scheduling mechanism. We compared the
static node assignment policy using the runtime mechanism
with the same node assignment using only compiler hints.
The overheads were negligible.

Overall, these experiments show that HPVM enables flex-
ible scheduling policies directly using the dataflow graphs.
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Figure 3. GPU Experiments - Normalized Execution Time. For each
benchmark, left bar is HPVM and right bar is OpenCL.

Figure 4. Vector Experiments - Normalized Execution Time. For each
benchmark, left bar is HPVM and right bar is OpenCL.

Figure 5. Frame rates of different configurations of Edge Detection six
stage pipeline through single HPVM object code.

Figure 6. Edge Detection Frame rate with different scheduling policies.
The green and red band in the graph indicates when the GPU is available
or not respectively.

7.4 Node Fusion Optimization Evaluation
We evaluated the benefits of Node Fusion using two widely
used kernels, Laplacian Estimate (L) and Gradient Compu-
tation (G). Most benchmarks we examined have been hand-
tuned to apply such transformations manually, making it
hard to find Node Fusion opportunities (although they may
often be more natural to write without manual node fusion).
The two kernels’ dataflow graphs have similar structure,
shown for L in Figure 1. We compiled the codes to run en-
tirely onGPU and fed the same video frames as before. Fusing
just the two independent nodes gave a speedup of 3.7% and
12.8% on L andG respectively. Fusing all three nodes yielded

a speedup of 10.6% and 30.8% on L andG respectively. These
experiments show that Node Fusion can yield significant
gains, but the benefits depend heavily on which nodes are
fused.

8 Related Work
There is a long history of work on dataflow executionmodels,
programming languages, and compiler systems for homoge-
neous parallel systems [3, 12, 15, 16, 18, 26, 32, 38]. HPVM
aims to adapt the dataflow model to modern heterogeneous
parallel hardware. We focus below on programming tech-
nologies for heterogeneous systems.

Virtual ISAs: NVIDIA’s PTX virtual ISA provides porta-
bility across NVIDIA GPUs of different sizes and generations.
HSAIL [14] and SPIR [20] both provide a portable object code
distribution format for a wider class of heterogeneous sys-
tems, including GPUs, vectors and CPUs. All these systems
implement a model that can be described as a “grid of ker-
nel functions,” which captures individual parallel loop nests
well, but more complex parallel structures (such as the 6-
node pipeline DAG used in our Edge Detection example) are
only expressed via explicit, low-level data movement and
kernel coordination. This makes the underlying model un-
suitable for use as a retargetable compiler IR, or for flexible
runtime scheduling. Finally, it is difficult, at best, to express
some important kinds of parallelism, such as pipelined par-
allelism (important for streaming applications), because all
buffering, synchronization, etc., must be implemented ex-
plicitly by the program. In contrast, pipelined parallelism
can be expressed easily and succinctly in HPVM, in addition
to coarse- or fine-grain data-parallelism.

Compiler IRs with Explicit Parallel Representa-
tions: We focus on parallel compilers for heterogeneous
systems. The closest relevant compiler work is OSCAR [25,
29, 36], which uses a hierarchical task dependence graph as
a parallel program representation for their compiler IR. They
do not use this representation as a virtual ISA, which means
they cannot provide object code portability. Their graph
edges represent data and control dependences, not dataflow
(despite the name), which is well suited to shared memory
systems but not as informative for non-shared memory. In
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particular, for explicit data transfers, the compiler must infer
automatically what data must be moved (e.g., host mem-
ory to accelerator memory). They use hierarchical graphs
only for the (homogeneous) host processors, not for acceler-
ators, because they do not aim to perform parallel compiler
transformations for code running within an accelerator nor
runtime scheduling choices for such code. KIMBLE [8, 9]
adds a hierarchical parallel program representation to GCC,
while SPIRE [19] defines a methodology for sequential to
parallel IR extension. Neither KIMBLE nor SPIRE make any
claim to, or give evidence of, performance portability or
parallel object code portability.

Runtime Libraries for Heterogeneous Systems: Par-
allel Virtual Machine (PVM) [17] enables a network of di-
verse machines to be used cooperatively for parallel com-
putation. Despite the similarity in the names, the systems
have different goals. What is virtualized in PVM are the ap-
plication programming interfaces for task management and
communication across diverse operating systems, to achieve
portability and performance across homogeneous parallel
systems. HPVM virtualizes the parallel execution behavior
and the parallel hardware ISAs, to enable portability and per-
formance across heterogeneous parallel hardware, including
GPUs, vector hardware, and potentially FPGAs.

Several other runtime systems [4, 7, 24, 31] support sched-
uling and executing parallel programs on heterogeneous
parallel systems. Habanero-Java [37] and Habanero-C [23],
provide an abstraction of heterogeneous systems called Hier-
archical Place Trees, which can be used to express and support
flexible mapping of parallel programs. None of these systems
provide program representations that can be used to define
a compiler IR or a virtual ISA.

Programming Languages: Source-level languages such
as CUDA, OpenCL, OpenACC, and OpenMP all support a
similar programming model that maps well to GPUs and
vector parallelism. None of them, however, address object
code portability and none can serve as a parallel compiler
IR. They also make it difficult to express important kinds of
parallelism, like pipelined parallelism.
PENCIL [5] is a programming language defined as a re-

stricted subset of C99, intended as an implementation lan-
guage for libraries and a compilation target for DSLs. Its
compiler uses the polyhedral model to optimize code and is
combined with an auto-tuning framework. It shares the goals
of source code portability and performance portability with
HPVM. However, it is designed as a readable language with
high-level optimization directives rather than as a compiler
IR, per se, and it also does not address object code portability.
StreamIt [35] and CnC [10] are programming languages

with a somewhat more general representation for stream-
ing pipelines. They, however, focus on stream parallelism,
whereas HPVM supports both streaming and non-streaming
parallelism. This is crucial when defining a compiler IR or a
virtual ISA for parallel systems (of any kind), because most

parallel languages (e.g., OpenMP, OpenCL, CUDA, Chapel,
etc.) are used for non-streaming parallel programs.
Legion [6] is a programming model and runtime system

for heterogeneous architectures. It provides abstractions for
describing the structure of program data in a machine inde-
pendent way. Similarly, Sequoia [13] provides rich memory
abstractions to enable explicit control over movement and
placement of data at all levels of a heterogeneous memory hi-
erarchy. HPVM lacks these features, but does express tiling
effectively and portably using the hierarchical graphs. In
future, we aim to add richer memory abstractions to HPVM.

Petabricks [2] explores the search space of different algo-
rithm choices and how theymap to CPU and GPU processors.
In Tangram [11], a program is written in interchangeable,
composable building blocks, enabling architecture-specific al-
gorithm and implementation selection. Exploring algorithm
choices is orthogonal to, and can be combined with, our
approach.

Delite [34] is a library for developing compiled, embedded
DSLs inside the programming language Scala. The Delite
execution graph encodes the dependencies between compu-
tations. To provide flexibility to run these computations on
different hardware devices, Delite relies on the DSL devel-
opers to provide Scala, CUDA, OpenCL implementations of
these computations as necessary for efficiency. HPVM on the
other hand relies on the hardware vendors to provide plat-
form specific implementation of computations in HPVM IR.
The broader Delite approach can be combined with HPVM
approach to ease burden on the DSL developers.

9 Conclusion
In this paper we presented HPVM, a parallel program repre-
sentation that can map down to diverse parallel hardware.
HPVM is a hierarchical dataflow graph with side effects and
vector instructions. We present a prototype system based on
the HPVMparallelismmodel to define a compiler IR, a virtual
instruction set, and a flexible scheduling framework. We im-
plement two optimizations as transforms on the HPVM IR —
node fusion and tiling —, and translators for NVIDIA’s GPUs,
Intel’s AVX vector units, and multicore X86-64 processors.
Our experiments show that HPVM achieves performance
portability across these classes of hardware and significant
performance gains from the optimizations, and is able to
support highly flexible scheduling policies.

We conclude that HPVM is a promising basis for achieving
performance portability and for implementing parallelizing
compilers and schedulers for heterogeneous parallel systems.
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