
Stash: Have Your Scratchpad and Cache It Too ∗

Rakesh Komuravelli† Matthew D. Sinclair† Johnathan Alsop† Muhammad Huzaifa†

Maria Kotsifakou† Prakalp Srivastava† Sarita V. Adve†‡ Vikram S. Adve†‡

† University of Illinois at Urbana-Champaign
‡ École Polytechnique Fédérale de Lausanne

hetero@cs.illinois.edu

Abstract
Heterogeneous systems employ specialization for energy

efficiency. Since data movement is expected to be a dominant
consumer of energy, these systems employ specialized mem-
ories (e.g., scratchpads and FIFOs) for better efficiency for
targeted data. These memory structures, however, tend to exist
in local address spaces, incurring significant performance and
energy penalties due to inefficient data movement between the
global and private spaces. We propose an efficient heteroge-
neous memory system where specialized memory components
are tightly coupled in a unified and coherent address space.
This paper applies these ideas to a system with CPUs and
GPUs with scratchpads and caches.

We introduce a new memory organization, stash, that com-
bines the benefits of caches and scratchpads without incurring
their downsides. Like a scratchpad, the stash is directly ad-
dressed (without tags and TLB accesses) and provides compact
storage. Like a cache, the stash is globally addressable and
visible, providing implicit data movement and increased data
reuse. We show that the stash provides better performance
and energy than a cache and a scratchpad, while enabling
new use cases for heterogeneous systems. For 4 microbench-
marks, which exploit new use cases (e.g., reuse across GPU
compute kernels), compared to scratchpads and caches, the
stash reduces execution cycles by an average of 27% and 13%
respectively and energy by an average of 53% and 35%. For
7 current GPU applications, which are not designed to exploit
the new features of the stash, compared to scratchpads and
caches, the stash reduces cycles by 10% and 12% on average
(max 22% and 31%) respectively, and energy by 16% and 32%
on average (max 30% and 51%).

1. Introduction
Specialization is a natural path to energy efficiency. There
has been a significant amount of work on compute specializa-
tion and it seems clear that future systems will support some
collection of heterogeneous compute units (CUs). However,
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the memory hierarchy is expected to become a dominant con-
sumer of energy as technology continues to scale [18, 22].
Thus, efficient data movement is essential for energy efficient
heterogeneous systems.

To provide efficient data movement, modern heterogeneous
systems use specialized memories; e.g., scratchpads and FI-
FOs. These memories often provide better efficiency for spe-
cific access patterns but they also tend to exist in disjoint,
private address spaces. Transferring data to/from these pri-
vate address spaces incurs inefficiencies that can negate the
benefits of specialization. We propose an efficient heteroge-
neous memory system where specialized memory components
are tightly coupled in a unified and coherent address space.
Although industry has recently transitioned to more tightly
coupled heterogeneous systems with a single unified address
space and coherent caches [1, 3, 20], specialized components
such as scratchpads are still within private, incoherent address
spaces.

In this paper, we focus on heterogeneous systems with
CPUs and GPUs where the GPUs access both coherent caches
and private scratchpads. We propose a new memory organiza-
tion, stash, that combines the performance and energy benefits
of caches and scratchpads. Like a scratchpad, the stash pro-
vides compact storage and does not have conflict misses or
overheads from tags and TLB accesses. Like a cache, the
stash is globally addressable and visible, enabling implicit,
on-demand, and coherent data movement and increasing data
reuse. Table 1 compares caches and scratchpads (Section 2
discusses the stash).

1.1. Caches

Caches are a common memory organization in modern sys-
tems. Their software transparency makes them easy to pro-
gram, but caches have several inefficiencies:
Indirect, hardware-managed addressing: Cache loads and
stores specify addresses that hardware must translate to deter-
mine the physical location of the accessed data. This indirect
addressing implies that each cache access (a hit or a miss)
incurs (energy) overhead for TLB lookups and tag compar-
isons. Virtually tagged caches do not require TLB lookups
on hits, but they incur additional overhead, including dealing
with synonyms, page mapping and protection changes, and
cache coherence [8]. Furthermore, the indirect, hardware-
managed addressing also results in unpredictable hit rates
due to cache conflicts, causing pathological performance (and
energy) anomalies, a notorious problem for real-time systems.
Inefficient, cache line based storage: Caches store data at
fixed cache line granularities which wastes SRAM space when
a program does not access the entire cache line (e.g., when a
program phase traverses an array of large objects but accesses
only one field in each object).



Feature Benefit Cache Scratchpad Stash

Directly addressed
No address translation hardware access 7 3 3

(if physically tagged) (on hits)
No tag access 7 3 3
No conflict misses 7 3 3

Compact storage Efficient use of SRAM storage 7 3 3

Global addressing
Implicit data movement from/to structure

3 7 3No pollution of other memories
On-demand loads into structures

Global visibility Lazy writebacks to global address space (AS)
3 7 3Reuse across compute kernels and application phases

Table 1: Comparison of cache, scratchpad, and stash.

1.2. Scratchpads
Scratchpads (referred to as shared memory in CUDA) are local
memories that are managed in software, either by the program-
mer or through compiler support. Unlike caches, scratchpads
are directly addressed so they do not have overhead from TLB
lookups or tag comparisons (this provides significant savings:
34% area and 40% power [7] or more [26]). Direct addressing
also eliminates the pathologies of conflict misses and has a
fixed access latency (100% hit rate). Scratchpads also provide
compact storage since the software only brings useful data
into the scratchpad. These features make scratchpads appeal-
ing, especially for real-time systems [5, 37, 38]. However,
scratchpads also have some inefficiencies:
Not Globally Addressable: Scratchpads use a separate ad-
dress space disjoint from the global address space, with no
hardware mapping between the two. Thus, extra instructions
must explicitly move data between the two spaces, incurring
performance and energy overhead. Furthermore, in current
systems the additional loads and stores typically move data via
the core’s L1 cache and its registers, polluting these resources
and potentially evicting (spilling) useful data. Scratchpads
also do not perform well for applications with on-demand
loads because today’s scratchpads preload all elements. In
applications with control/data dependent accesses, only a few
of the preloaded elements will be accessed.
Not Globally Visible: A scratchpad is visible only to its local
CU. Thus dirty data in the scratchpad must be explicitly writ-
ten back to the corresponding global address before it can be
used by other CUs. Further, all global copies in the scratchpad
must be freshly loaded if they could have been written by
other CUs. In typical GPU programs, there is no data shar-
ing within a kernel;1 therefore, the writebacks must complete
and the scratchpad space deallocated by the end of the kernel.
With more fine-grained sharing, these actions are needed at
the more frequent fine-grained synchronization phases. Thus,
the scratchpads’ lack of global visibility incurs potentially un-
necessary eager writebacks and precludes reuse of data across
GPU kernels and application synchronization phases.
1.2.1. Example and Usage Modes

Figure 1a shows how scratchpads are used. The code at
the top reads one field, f ieldX (of potentially many), from an
array of structs (AoS) data structure, aosA, into an explicit
scratchpad copy. It performs some computations using the

1A kernel is the granularity at which the CPU invokes the GPU and it
executes to completion on the GPU.

scratchpad copy and then writes back the result to aosA. The
bottom of Figure 1a shows some of the corresponding steps
in hardware. First, the hardware must explicitly copy f ieldX
into the scratchpad. To achieve this, the application issues
an explicit load of the corresponding global address to the
L1 cache (event 1). On an L1 miss, the hardware brings
f ieldX’s cache line into the L1, polluting it as a result (events
2 and 3). Next, the hardware sends the data value from the
L1 to the core’s register (event 4). Finally, the application
issues an explicit store instruction to write the value from
the register into the corresponding scratchpad address (event
5). At this point, the scratchpad has a copy of f ieldX and
the application can finally access the data (events 6 and 7).
Once the application is done modifying the data, the dirty
scratchpad data is explicitly written back to the global address
space, requiring loads from the scratchpad and stores into the
cache (not shown in the figure).

We refer to this scratchpad usage mode, where data is moved
explicitly from/to the global space, as the global-unmapped
mode. Scratchpads can also be used in temporary mode for
private, temporary values. Temporary values do not require
global address loads or writebacks because they are discarded
after their use (they trigger only events 6 and 7).

1.3. Stash

To address the inefficiencies of caches and scratchpads we
introduce a new memory organization, stash, which combines
the best properties of the cache and scratchpad organizations.
Similar to a scratchpad, the stash is software managed, directly
addressable, and can compactly map non-contiguous global
memory elements to obtain the benefits of SoA or AoS for-
mat without any software changes or data transformations in
memory. In addition, the stash also has a mapping between
the global and local stash address spaces. Software provides
this mapping; the stash hardware uses it whenever a transla-
tion between the two address spaces is required (e.g., misses,
writebacks, and remote requests). The mapping allows the
stash to avoid the explicit data movement of the scratchpad
and instead implicitly move data between address spaces, like
a cache. As a result, stash values are globally visible and
replicable, enabled by relatively straightforward extensions to
any underlying coherence protocol (see Section 4.3).

There has been a significant amount of prior work on op-
timizing the behavior of private memories such as scratch-
pads. This includes methods for directly transferring data
from the memory to the scratchpad without polluting registers



func_scratch(struct* aosA, int myOffset, int myLen)
{

__scratch__ int local[myLen];   
// explicit global load and scratchpad store
parallel for(int i = 0; i < myLen; i++) {

local[i] = aosA[myOffset + i].fieldX;
}
// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);
}
// explicit scratchpad load and global store
parallel for(int i = 0; i < myLen; i++) {

aosA[myOffset + i].fieldX = local[i];
}

}

func_stash(struct* aosA, int myOffset, int myLen)
{

__stash__ int local[myLen];
//AddMap(stashBase, globalBase, fieldSize, 

objectSize, rowSize, strideSize, 
numStrides, isCoherent)

AddMap(local[0], aosA[myOffset], sizeof(int), 
sizeof(struct), myLen, 0, 1, true);

// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);

}
}

func_scratch(struct* aosA, int myOffset, int myLen)
{

__scratch__ int local[myLen];   
// explicit global load and scratchpad store
parallel for(int i = 0; i < myLen; i++) {

local[i] = aosA[myOffset + i].fieldX;
}
// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);
}
// explicit scratchpad load and global store
parallel for(int i = 0; i < myLen; i++) {

aosA[myOffset + i].fieldX = local[i];
}

}

func_stash(struct* aosA, int myOffset, int myLen)
{

__stash__ int local[myLen];
//AddMap(stashBase, globalBase, fieldSize, 

objectSize, rowSize, strideSize, 
numStrides, isCoherent)

AddMap(local[0], aosA[myOffset], sizeof(int), 
sizeof(struct), myLen, 0, 1, true);

// do computation(s) with local(s)
parallel for(int i = 0; i < myLen; i++) {

local[i] = compute(local[i]);

}
}
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Figure 1: Codes and hardware events to copy data from the corresponding global address for (a) scratchpad and (b) stash (events
to write data back to the global address are not shown).

or caches [4, 9, 21], changing the data layout for increased
compaction [11, 13], removing tag checks for caches [33, 39],
and virtualizing private memories [15, 16, 17, 28]. Each of
these techniques mitigates some, but not all, of the inefficien-
cies of scratchpads or caches. While a quantitative comparison
with all of the techniques is outside the scope of this work, we
provide a detailed qualitative comparison for all (Section 7)
and quantitatively compare our results to the closest technique
to our work: scratchpad enhanced with a DMA engine.

The stash is a forward looking memory organization de-
signed both to improve current applications and increase the
use cases that can benefit from using scratchpads. Stash can
be applied to any CU on an SoC including the CPU. In this
paper we focus on GPUs which already have benchmarks that
exploit scratchpads. However, because GPU scratchpads are
not globally addressable or visible, current GPU applications
that use the scratchpad cannot exploit these features. Thus, to
demonstrate the additional benefits of the stash, we evaluate
it for both current GPU applications and microbenchmarks
designed to show future use cases.

For four microbenchmarks, which exploit new use cases,
the stash outperforms all other configurations: compared to
a scratchpad+cache hierarchy, a cache-only hierarchy, and
scratchpads with DMA support, the stash reduces cycles by
an average of 27%, 13%, and 14%, respectively, and reduces
energy consumption by an average of 53%, 35%, and 32%,
respectively. Furthermore, even for current GPU applications,
which are not designed to exploit the new use cases, the stash
outperforms both scratchpad+cache and cache-only config-
urations while providing comparable results to scratchpads

with a DMA enhancement. Compared to a scratchpad+cache
hierarchy and a cache-only hierarchy across seven modern
GPU applications, the stash reduces cycles by 10% and 12%
on average (max 22% and 31%), respectively, while decreas-
ing energy by 16% and 32% on average (max 30% and 51%),
respectively. These results demonstrate the ability of the stash
to provide high performance and energy efficiency for modern
applications while also demonstrating new use cases.

2. Stash Overview
The stash is a new SRAM organization that combines the ad-
vantages of scratchpads and caches, as summarized in Table 1.
Stash has the following features:
Directly addressable: Like scratchpads, a stash is directly
addressable and data in the stash is explicitly allocated by
software (either the programmer or the compiler).
Compact storage: Since it is software managed, only data
that is accessed is brought into the stash. Thus, like scratch-
pads, stash enjoys the benefit of a compact storage layout, and
unlike caches, it only stores useful words from a cache line.
Physical to global address mapping: In addition to being
able to generate a direct, physical stash address, software also
specifies a mapping from a contiguous set of stash addresses
to a (possibly non-contiguous) set of global addresses. Our
architecture can map to a 1D or 2D, possibly strided, tile of
global addresses.2 Hardware maintains the mapping between
the stash and global space.
Global visibility: Like a cache, stash data is globally visible
through a coherence mechanism (described in Section 4.3).

2Our design can easily be extended to other access patterns.



A stash, therefore, does not need to eagerly writeback dirty
data. Instead, data can be reused and lazily written back only
when the stash space is needed for a new allocation (similar
to cache replacements). If another CU needs the data, it will
be forwarded through the coherence mechanism. In contrast,
for scratchpads in current GPUs, data is written back to global
memory (and flushed) at the end of a kernel, resulting in
potentially unnecessary and bursty writebacks with no reuse
across kernels.

The first time a load occurs to a newly mapped stash address,
it implicitly copies the data from the mapped global space
to the stash (analogous to a cache miss). Subsequent loads
for that address immediately return the data from the stash
(analogous to a cache hit, but with the energy benefits of
direct addressing). Similarly, no explicit stores are needed
to write back the stash data to its mapped global location.
Thus, the stash enjoys all the benefits of direct addressing of
a scratchpad on hits (which occur on all but the first access),
without the overhead incurred by the additional loads and
stores that scratchpads require for explicit data movement.

Figure 1b transforms the code from Figure 1a for a stash.
The stash is directly addressable and stores data compactly just
like a scratchpad but does not have any explicit instructions
for moving data between the stash and the global address
space. Instead, the stash has an AddMap call that specifies the
mapping between the two address spaces (discussed further in
Section 3). In hardware (bottom part of the figure), the first
load to a stash location (event 1) implicitly triggers a global
load (event 2) if the data is not already present in the stash.
Once the load returns the desired data to the stash (event 3),
it is sent to the core (event 4). Subsequent accesses directly
return the stash data without consulting the global mapping.

3. Stash Software Interface
We envision the programmer or the compiler will map a (pos-
sibly non-contiguous) part of the global address space to the
stash. For example, programmers writing applications for
today’s GPU scratchpads already effectively provide such a
mapping. There has also been prior work on compiler meth-
ods to automatically infer this information [5, 23, 30]. The
mapping of the global address space to stash requires strictly
less work compared to that of a scratchpad as it avoids the
need for explicit loads and stores between the global and stash
address spaces.

3.1. Specifying Stash-to-Global Mapping
The mapping between global and stash address spaces is speci-
fied using two intrinsic functions. The first intrinsic, AddMap,
is called to communicate a new mapping to the hardware. We
need an AddMap call for every data structure (a linear array
or a 2D tile of an AoS structure) that is mapped to the stash.

Figure 1b shows an example usage of AddMap along with
its definition. Figures 2a and 2b respectively show an example
2D tiled data structure in the global address space and the
mapping of one field of one of the 2D tiles in the 1D stash
address space. The first two parameters of AddMap specify
the stash and global virtual base addresses for the given tile,
as shown in Figure 2 (scratchpad base described in Section 4).
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Figure 2: Mapping a global 2D AoS tile to a 1D stash address
space.

Figure 2a also shows the various parameters used to describe
the object and the tile. The field size and the object size provide
information about the global data structure (field size = object
size for scalar arrays). The next three parameters specify
information about the tile in the global address space: the row
size of the tile, global stride between two rows of the tile, and
number of strides. Finally, isCoherent specifies the operation
mode of the stash (discussed in Section 3.3). Figure 2b shows
the 1D mapping of the desired individual fields from the 2D
global AoS data structure.

The second intrinsic function, ChgMap, is used when there
is a change in mapping or the operation mode of a set of
global addresses mapped to the stash. ChgMap uses all of the
AddMap parameters and adds a field to identify the map entry
it needs to change (an index in a hardware table, discussed in
Section 4.1.2).

3.2. Stash Load and Store Instructions
The load and store instructions for a stash access are similar
to those for a scratchpad. On a hit, the stash just needs to
know the requested address. On a miss, the stash also needs
to know which stash-to-global mapping it needs to use (an
index in a hardware table, discussed in Section 4.1.2, sim-
ilar to that used by ChgMap above). This information can
be encoded in the instruction in at least two different ways
without requiring extensions to the ISA. CUDA, for example,
has multiple address modes for LD/ST instructions - register,
register-plus-offset, and immediate addressing. The register-
based addressing schemes hold the stash (or scratchpad) ad-
dress in the register specified by the register field. We can
use the higher bits of the register for storing the map index
(since a stash address does not need all the bits of the register).
Alternatively, we can use the register-plus-offset addressing
scheme, where register holds the stash address and o f f set
holds the map index (in CUDA, offset is currently ignored



when the local memory is configured as a scratchpad).
3.3. Usage Modes
Stash data can be used in four different modes:
Mapped Coherent: This mode is based on Figure 1b – it pro-
vides a stash-to-global mapping and the stash data is globally
addressable and visible.
Mapped Non-coherent: This mode is similar to Mapped
Coherent except that the stash data is not globally visible. As
a result, any modifications to local stash data are not reflected
in the global address space. We use the isCoherent bit to
differentiate between the Mapped-Coherent and Mapped Non-
Coherent usage modes.
Global-unmapped and Temporary: These two modes are
based on the scratchpad modes described in Section 1.2.1.
Unlike Mapped Coherent and Mapped Non-coherent, these
modes do not need an AddMap call, since they do not have
global mappings. These modes allow programs to fall back, if
necessary, to how scratchpads are currently used and ensure
we support all current scratchpad code in our system.

4. Stash Hardware Design

Data Array

S
t
a
t
e

Stash Storage

Map index
table

Stash-map

Virtual
Address

Physical
Address

VP-map

Valid Fields from AddMap/ChgMap #DirtyData

Stash LD/ST Stash Addr Map ID

TileData structure

TLB

RTLB

Figure 3: Stash hardware components.

This section describes the design of the stash hardware,
which provides stash-to-global and global-to-stash address
translations for misses, writebacks, and remote requests. For
simplicity and without loss of generality we use NVIDIA’s
CUDA terminology to explain how the stash works in the
context of a GPU. On current GPUs, every thread block gets
a separate scratchpad allocation. The runtime translates the
program-specified scratchpad address to a physical location
in the thread block’s allocated space. We assume a similar
allocation and runtime address mapping mechanism for the
stash.
4.1. Stash Components
Figure 3 shows the stash’s four hardware components: (1)
stash storage, (2) map index table, (3) stash-map, and (4)
VP-map. This section describes each component. Section 4.2
describes how they enable the different stash operations.
4.1.1. Stash Storage

The stash storage component provides data storage for the
stash. It also contains state bits to identify hits and misses
(depending on the coherence protocol) and to aid writebacks
(explained in Section 4.2).
4.1.2. Map Index Table

The per thread block map index table provides an index into
the thread block’s stash-map entries. Each AddMap allocates
an entry into the map index table. Assuming a fixed ordering of

AddMap calls, the compiler can determine which table entry
corresponds to a mapping – it includes this entry’s ID in future
stash instructions corresponding to this mapping (using the
format from Section 3). The size of the table is the maximum
number of AddMaps allowed per thread block (our design
allocates up to four entries per thread block). If the compiler
runs out of entries, it cannot map any more data to the stash.

4.1.3. Stash-map
The stash-map contains an entry for each mapped stash data

partition, shown in Figure 3. Each entry contains information
to translate between the stash and global virtual address spaces,
determined by the fields in AddMap or ChgMap. We precom-
pute most of the information required for the translations at
the AddMap and ChgMap call and do not need to store all
the fields from these calls. With the precomputed information,
only six arithmetic operations are required per miss (details
in [24]). In addition to information for address translation, the
stash-map entry has a Valid bit (denotes if the entry is valid)
and a #DirtyData field used for writebacks.

We implemented the stash-map as a circular buffer with a
tail pointer. We add and remove entries to the stash-map in the
same order for easy management of stash-map’s fixed capacity.
The number of entries should be at least the maximum number
of thread blocks a core can execute in parallel multiplied by
the maximum number of AddMap calls allowed per thread
block. We found that applications did not simultaneously use
more than four map entries per thread block. Assuming up to
eight thread blocks in parallel, 32 map entries are sufficient
but we use 64 entries to allow additional lazy writebacks.

4.1.4. VP-map
We need the virtual-to-physical translations for each page

of a stash-to-global mapping because every mapping can span
multiple virtual pages. VP-map uses two structures for this
purpose. The first structure, T LB, provides a virtual to physical
translation for every mapped page, required for stash misses
and writebacks. We can leverage the core’s TLB for this
purpose. For remote requests which come with a physical
address, we need a reverse translation. The second structure,
RT LB, provides the reverse translation and is implemented as
a CAM over physical pages.3

Each entry in the VP-map has a pointer (not shown in Fig-
ure 3) to a stash-map entry that indicates the latest stash-map
entry that requires the given translation. When a stash-map
entry is replaced, any entries in the VP-map that have a pointer
to that map entry are no longer needed. We remove these
entries by walking the RT LB or T LB. By keeping each RT LB
entry (and each T LB entry, if kept separate from system TLB)
around until the last mapping that uses it is removed, we
guarantee that we never miss in the RT LB (see Section 4.2).
We assume that the number of virtual-to-physical translations
required by all active mappings is less than the size of the VP-
map (for the applications we studied, 64 entries were sufficient
to support all the thread blocks running in parallel) and that
the compiler or programmer is aware of this requirement.

3To reduce area, the TLB and RTLB can be merged into a single structure.



4.2. Operations
Next we describe how we implement the stash operations.
Hit: On a hit (determined by coherence bits as discussed in
Section 4.3), the stash acts like a scratchpad, accessing only
the storage component.
Miss: A miss needs to translate the stash address into a global
physical address. Stash uses the index to the map index table
provided by the instruction to determine its stash-map entry.
Given the stash address and the stash base from the stash-map
entry, we can calculate the stash offset. Using the stash offset
and the other fields of the stash-map entry, we can calculate
the virtual offset (details in [24]). Once we have the virtual
offset, we add it to the virtual base of the stash-map entry to
obtain the missing global virtual address. Finally, using the
VP-map we can determine the corresponding physical address
which is used to handle the miss.

Additionally, a miss must consider if the data it replaces
needs to be written back and a store miss must perform some
bookkeeping to facilitate a future writeback. We describe these
actions next.
Lazy Writebacks: Stash writebacks (only for Mapped Coher-
ent entries) happen lazily; i.e., the writebacks are triggered
only when the space is needed by a future stash allocation
similar to cache evictions.

On a store, we need to maintain the index of the current
stash-map entry for a future writeback. Naively we could store
the stash-map entry’s index per word and write back each word
as needed but this is not efficient. Instead, we store the index at
a larger, chunked granularity, say 64B, and perform writebacks
at this granularity.4 To know when to update this per chunk
stash-map index, we have a dirty bit per stash chunk. On a
store miss, if this dirty bit is not set, we set it and update the
stash-map index. We also update the #DirtyData counter of
the stash-map entry to track the number of dirty stash chunks
in the corresponding stash space. The per chunk dirty bits are
unset when the thread block completes so that they are ready
for use by a future thread block using the same stash chunk.

Later, if a new mapping needs to use the same stash location,
the old dirty data needs to be written back. We (conceptu-
ally) use a writeback bit per chunk to indicate the need for a
writeback (Section 4.4 discusses using bits already present for
coherence states for this purpose). This bit is set for all the
dirty stash chunks at the end of a thread block and checked
on each access to trigger any needed writeback. To perform
a writeback, we use the per chunk stash-map index to access
the stash-map entry – similar to a miss, we determine the dirty
data’s physical address. We write back all dirty words in a
chunk on a writeback (we leverage per word coherence state to
determine the dirty words). On a writeback, the #DirtyData
counter of the map entry is decremented and the writeback
bit of the stash chunk is reset. When the #DirtyData counter
reaches zero, the map entry is marked as invalid.
AddMap: An AddMap call advances the stash-map’s tail,
and sets the next entry of its thread block’s map index table to
point to this tail entry. It updates the stash-map tail entry with

4This requires data structures in the memory to be aligned at the chosen
chunk granularity.

its parameters, does the needed precomputations for future
address translations, and sets the Valid bit (Section 4.1.3). It
also invalidates any entries from the VP-map that have the
new stash-map tail as the back pointer.

For every virtual page mapped, an entry is added to the VP-
map’s RT LB (and the T LB, if maintained separately from the
system’s TLB). If the system TLB has the physical translation
for this page, we populate the corresponding entries in VP-
map (both in RT LB and T LB). If the translation does not
exist in the TLB, the physical translation is acquired at the
subsequent stash miss. For every virtual page in a new map
entry, the stash-map pointer in the corresponding entries in VP-
map is updated to point to the new map entry. In the unlikely
scenario where the VP-map becomes full and has no more
space for new entries, we evict subsequent stash-map entries
(using the procedure described here) until there are enough
VP-map entries available. The VP-map is sized to ensure that
this is always possible. This process guarantees that we never
miss in the RTLB for remote requests.

If the stash-map entry being replaced was previously valid
(Valid bit set), then it indicates an old mapping has dirty data
that has not yet been (lazily) written back. To ensure that the
old mapping’s data is written back before the entry is reused,
we initiate its writebacks and block the core until they are done.
Alternately, a scout pointer can stay a few entries ahead of the
tail, triggering non-blocking writebacks for valid stash-map
entries. This case is rare because usually a new mapping has
already reclaimed the stash space held by the old mapping,
writing back the old dirty data on replacement.
ChgMap: ChgMap updates an existing stash-map entry with
new mapping information. If the mapping points to a new
set of global addresses, we need to issue writebacks for any
dirty data of the old mapping (only if Mapped Coherent) and
mark all the remapped stash locations as invalid (using the
coherence state bits in Section 4.3). A ChgMap can also
change the usage mode for the same chunk of global addresses.
If an entry is changed from coherent to non-coherent, then we
need to issue writebacks for the old mapping because the old
mapping’s stores are globally visible. However, if the entry is
modified from non-coherent to coherent, then we need to issue
ownership/registration requests for all dirty words in the new
mapping according to the coherence protocol (Section 4.3).
4.3. Coherence Protocol Extensions for Stash
All Mapped Coherent stash data must be kept coherent. We
can extend any coherence protocol to provide this support (e.g.,
a traditional hardware coherence protocol such as MESI or a
software-driven hardware coherence protocol like DeNovo [14,
35, 36]) as long as it supports the following three features:
1. Tracking at word granularity: Stash data must be tracked
at word granularity because only useful words from a given
cache line are brought into the stash.5

2. Merging partial cache lines: When the stash sends data to
a cache (either as a writeback or a remote miss response), it

5We can support byte granularity accesses if all (stash-allocated) bytes in
a word are accessed by the same CU at the same time; i.e., there are no word-
level data races. None of the benchmarks we studied have byte granularity
accesses.



may send only part of a cache line. Thus the cache must be
able to merge partial cache lines.
3. Map index for physical-to-stash mapping: When data is
modified by a stash, the directory needs to record the modify-
ing core (as usual) and also the stash-map index for that data
(so a remote request can determine where to obtain the data).

It is unclear which is the best underlying coherence protocol
to extend for the stash since protocols for tightly coupled
heterogeneous systems are evolving rapidly and represent a
moving target [19, 32]. Below we discuss how the above
features can be incorporated within traditional directory-based
hardware protocols and the recent DeNovo software-driven
hardware protocol [14]. For our evaluations, without loss of
generality, we choose the latter since it incurs lower overhead,
is simpler, and is closer to current GPU memory coherence
strategies (e.g., it relies on cache self-invalidations rather than
writer-initiated invalidations and it does not use directories).
Traditional protocols: We can support the above features
in a traditional single-writer directory protocol (e.g., MESI)
with minimal overhead by retaining coherence state at line
granularity, but adding a bit per word to indicate whether its up-
to-date copy is present in a cache or a stash. Assuming a shared
last level cache (LLC), when a directory receives a stash store
miss request, it transitions to modified state for that line, sets
the above bit in the requested word, and stores the stash-map
index (obtained with the miss request) in the data field for the
word at the LLC. This straightforward extension, however, is
susceptible to false-sharing (similar to single-writer protocols
for caches) and the stash may lose the predictability of a
guaranteed hit after an initial load. To avoid false-sharing,
we could use a sector-based cache with word-sized sectors,
but this incurs heavy overhead with conventional hardware
protocols (state bits and sharers list per word at the directory).
Sectored software-driven protocols: DeNovo [14, 35, 36] is
a software-driven hardware coherence protocol that has word
granularity sectors (coherence state is at word granularity, but
tags are at conventional line granularity) and naturally does
not suffer from false-sharing.

DeNovo exploits software-inserted self-invalidations at syn-
chronization points to eliminate directory overhead for track-
ing the sharers list. Moreover, DeNovo requires fewer coher-
ence state bits because it has no transient states. This combi-
nation allows DeNovo’s total state bits overhead to be compet-
itive with (and more scalable than) line-based MESI [14].

We extended the line-based DeNovo protocol from [14]
(with line granularity tags and word granularity coherence, but
we do not use DeNovo’s regions). This protocol was originally
proposed for multi-core CPUs and deterministic applications.
Later versions of DeNovo support non-deterministic codes [36,
35], but our applications are deterministic. Although GPUs
support non-determinism through operations such as atomics,
these are typically resolved at the shared cache and are trivially
coherent. We assume that software does not allow concurrent
conflicting accesses to the same address in both cache and
stash of a given core within a kernel. Our protocol requires
the following extensions to support stash operations:
Stores: Similar to an MSI protocol, the DeNovo coherence

protocol has three states. Stores miss when in Shared or
Invalid state and hit when in Registered state. All store misses
need to obtain registration (analogous to MESI’s ownership)
from the LLC/directory. In addition to registering the core ID
at the directory, registration requests for words in the stash
also need to include the corresponding stash-map index. As
with the original DeNovo protocol, a system with a shared
LLC stores the registered core ID in the data array of the LLC.
The stash-map index can also be stored along with the core ID
and its presence can be indicated using a bit in the same LLC
data word. Thus, the LLC continues to incur no additional
storage overhead for keeping track of remotely modified data.
Self-invalidations: At the end of a kernel we keep the data that
is registered by the core (specified by the coherence state) but
self-invalidate the rest of the entries to make the stash space
ready for any future new allocations. In contrast, a scratchpad
invalidates all entries (after explicitly writing the data back to
the global address space).
Remote requests: Remote requests for stash that are redirected
via the directory come with a physical address and a stash-map
index (stored at the directory during the request for registra-
tion). Using the physical address, VP-map provides us with
the corresponding virtual address. Using the stash-map index,
we can obtain all the mapping information from the corre-
sponding stash-map entry. We use the virtual base address
from the entry and virtual address from the VP-map to calcu-
late the virtual offset. Once we have the virtual offset, we use
the map-entry’s other fields to calculate the stash offset and
add it to the stash base to get the stash address.
4.4. State Bits Overhead for Stash Storage
With the above DeNovo protocol, we compute the total state
bits overhead in the stash storage component (Section 4.1) as
follows. Each word (4B) needs 2 bits for the protocol state.
Each stash chunk needs 6 bits for the stash-map index (assum-
ing a 64 entry stash-map). Although Section 4.2 discussed
a separate per-chunk writeback bit, since DeNovo has only
3 states, we can use the extra state in its two coherence bits
to indicate the need for a writeback. Assuming 64B chunk
granularity, all of the above sum to 39 bits per stash chunk,
with a ∼8% overhead to the stash storage. Although this over-
head might appear to be of the same magnitude as that of tags
of conventional caches, only the two coherence state bits are
accessed on hits (the common case).
4.5. Stash Optimization: Data Replication
It is possible for two allocations in stash space to be mapped
to the same global address space. This can happen if the same
read-only data is simultaneously mapped by several thread
blocks in a CU, or if read-write data mapped in a previous
kernel is mapped again in a later kernel on the same CU. By
detecting this replication and copying replicated data between
stash mappings, it is possible to avoid expensive misses.

To detect data replication, on an AddMap or ChgMap (in-
frequent operations), the map is searched for the virtual base
address of the entry being added to the map. If there is a match,
we compare the tile specific parameters to confirm if the two
mappings indeed perfectly match. If there is a match, we set a
bit, reuseBit, and add a pointer to the old mapping in the new
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Figure 4: Baseline integrated architecture.

map entry. On a load miss, if the reuseBit is set, we first check
the corresponding stash location of the old mapping and copy
the value over if present. If not, we issue a miss to the registry.

If the new map entry is non-coherent and both the old and
new map entries are for the same allocation in the stash, we
need to write back the old dirty data. This is because any
new updates to the same stash location should not be globally
visible. Instead, if the new map entry is coherent and both the
old and new map entries are for different allocations in the
stash, we need to send new registration requests for the new
map entry because we need to update the directory that the
stash allocation corresponding to the new map entry holds the
latest up-to-date copy.

5. Methodology
5.1. Baseline Heterogeneous Architecture
Figure 4 shows our baseline heterogeneous architecture, a
tightly integrated CPU-GPU system with a unified shared
memory address space and coherent caches. The system is
composed of multiple CPU and GPU cores, which are con-
nected via an interconnection network. Each GPU Compute
Unit (CU), which is analogous to an NVIDIA SM, has a sep-
arate node on the network. All CPU and GPU cores have an
attached block of SRAM. For CPU cores, this is an L1 cache,
while for GPU cores, it is divided into an L1 cache and a
scratchpad. Each node also has a bank of the L2 cache, which
is shared by all CPU and GPU cores. The stash is located
at the same level as the GPU L1 caches and both the cache
and stash write their data to the backing L2 cache bank. All
L1 caches use a writeback policy and the DeNovo coherence
protocol. For a detailed justification of these design choices
see [24].
5.2. Simulation Environment
To model a tightly coupled memory system, we created an in-
tegrated CPU-GPU simulator. We used the Simics full-system
functional simulator to model the CPUs, the Wisconsin GEMS
memory timing simulator [29], and GPGPU-Sim v3.2.1 [6]
to model the GPU. We use Garnet [2] to model a 4x4 mesh
interconnect that has a GPU CU or a CPU core at each node.
We use CUDA 3.1 [31] for the GPU kernels in the applications
since this is the latest version of CUDA that is fully supported
in GPGPU-Sim. Table 2 summarizes the common key pa-
rameters of our simulated systems. Our GPU is similar to an
NVIDIA GTX 480.

We extended GPUWattch [25] to measure the energy
of the GPU CUs and the memory hierarchy including all
stash components. To model the stash storage we extended
GPUWattch’s scratchpad model by adding additional state

CPU Parameters
Frequency 2 GHz

Cores (microbenchmarks, apps) 15, 1
GPU Parameters

Frequency 700 MHz
CUs (microbenchmarks, apps) 1, 15

Scratchpad/Stash Size 16 KB
Number of Banks in Stash/Scratchpad 32

Memory Hierarchy Parameters
TLB & RTLB (VP-map) 64 entries each

Stash-map 64 entries
Stash address translation 10 cycles
L1 and Stash hit latency 1 cycle

Remote L1 and Stash hit latency 35−83 cycles
L1 Size (8 banks, 8-way assoc.) 32 KB

L2 Size (16 banks, NUCA) 4 MB
L2 hit latency 29−61 cycles

Memory latency 197−261 cycles

Table 2: Parameters of the simulated heterogeneous system.

bits. We model the stash-map as an SRAM structure and the
VP-map as a CAM unit. Finally, we model the operations for
the address translations by adding an ALU for each operation
using an in-built ALU model in GPUWattch. The sizes for
these hardware components are listed in Table 2.

For our NoC energy measurements we use McPAT
v.1.1 [27].6 We do not measure the CPU core or the CPU
L1 cache energy as our proposed stash design is implemented
on the GPU. But we do measure the network traffic traveling
to and from the CPU in order to capture any network traffic
variations caused by the stash.

5.3. Simulated Memory Configurations
Our baseline architecture has scratchpads as described in Sec-
tion 5.1. To evaluate the stash, we replaced the scratchpads
with stashes, following the design in Section 4 (we used the
DeNovo protocol and included the data replication optimiza-
tion). We also compare stash to a cache-only configuration
(i.e., all data allocated as global and accessed from the cache).

Additionally, we compare the stash to scratchpads enhanced
with a DMA engine. Our DMA implementation is based
on the D2MA design [21]. D2MA provides DMA capability
for scratchpad loads on discrete GPUs and supports strided
DMA mappings. D2MA adds special load instructions and
a hardware prefetch engine to preload all scratchpad words.
Unlike D2MA, our implementation blocks memory requests
at a core granularity instead of a warp granularity, supports
DMAs for stores in addition to loads, and runs on a tightly-
coupled system. We conservatively do not charge additional
energy for the DMA engine that issues the requests.

Overall we evaluate the following configurations:
1. Scratch: 16 KB Scratchpad + 32 KB L1 Cache. All mem-

ory accesses use the type specified by the original applica-
tion.

2. ScratchG: Scratch with all global accesses converted to
scratchpad accesses.

3. ScratchGD: ScratchG configuration with DMA support.

6We use McPAT’s NoC model instead of GPUWattch’s because our tightly
coupled system more closely resembles a multi-core system’s NoC.



4. Cache: 32 KB L1 Cache with all scratchpad accesses in
the original application converted to global accesses.7

5. Stash: 16 KB Stash + 32 KB L1 Cache. The scratchpad
accesses in the Scratch configuration were converted to
stash accesses.

6. StashG: Stash with all global accesses converted to stash
accesses.

5.4. Workloads
We present results for a set of benchmark applications to eval-
uate the effectiveness of the stash design on existing code.
However, these existing applications are tuned for execution
on a GPU with current scratchpad designs that do not effi-
ciently support data reuse, control/data dependent memory
accesses, and accessing specific fields from an AoS format.
As a result, modern GPU applications typically do not use
these features. However stash is a forward looking memory or-
ganization designed both to improve current applications and
increase the use cases that can benefit from using scratchpads.
Thus, to demonstrate the benefits of the stash, we also evaluate
it for microbenchmarks designed to show future use cases.
5.4.1. Microbenchmarks

We evaluate four microbenchmarks: Implicit, Pollution,
On-demand, and Reuse. Each microbenchmark is designed to
emphasize a different benefit of the stash design. All four mi-
crobenchmarks use an array of elements in AoS format; each
element in the array is a struct with multiple fields. The GPU
kernels access a subset of the structure’s fields; the same fields
are subsequently accessed by the CPU to demonstrate how the
CPU cores and GPU CUs communicate data that is mapped to
the stash. We use a single GPU CU for all microbenchmarks.
We parallelize the CPU code across 15 CPU cores to prevent
the CPU accesses from dominating execution time. The details
of each microbenchmark are discussed below.

Implicit highlights the benefits of the stash’s implicit loads
and lazy writebacks as highlighted in Table 1. In this mi-
crobenchmark, the stash maps one field from each element in
an array of structures. The GPU kernel updates this field from
each array element. The CPUs then access this updated data.

Pollution highlights the ability of the stash to avoid cache
pollution through its use of implicit loads that bypass the cache.
Pollution’s kernel reads and writes one field in two AoS arrays
A and B; A is mapped to the stash or scratchpad while B uses
the cache. A is sized to prevent reuse in the stash in order to
demonstrate the benefits the stash obtains by not polluting the
cache. B can fit inside the cache only without pollution from A.
Both stash and DMA achieve reuse of B in the cache because
they do not pollute the cache with explicit loads and stores.

On-demand highlights the on-demand nature of stash data
transfer and is representative of an application with fine-
grained sharing or irregular accesses. The On-demand ker-
nel reads and writes only one element out of 32, based on
a runtime condition. Scratchpad configurations (including

7Because the Cache configuration has 16 KB less SRAM than other con-
figurations, we also examined a 64 KB cache (GEMS only allows power-of-2
caches). The 64 KB cache was better than the 32 KB cache but had worse
execution time and energy consumption than StashG despite using more
SRAM.

Hardware Unit Hit Energy Miss Energy
Scratchpad 55.3 pJ –

Stash 55.4 pJ 86.8 pJ
L1 cache 177 pJ 197 pJ

TLB access 14.1 pJ 14.1 pJ8

Table 3: Per access energy for various hardware units.

ScratchGD) must conservatively load and store every element
that may be accessed. Cache and stash, however, can identify
a miss and generate a memory request only when necessary.

Reuse highlights the stash’s data compaction and global
visibility and addressability. This microbenchmark repeatedly
invokes a kernel which accesses a single field from each ele-
ment of a data array. The relevant fields of the data array can
fit in the stash but not in the cache because it is compactly
stored in the stash. Thus, each subsequent kernel can reuse
data that has been loaded into the stash by a previous kernel
and lazily written back. In contrast, the scratchpad config-
urations (including ScratchGD) are unable to exploit reuse
because the scratchpad is not globally visible. Cache cannot
reuse data because it is not able to compact data.
5.4.2. Applications

We selected seven larger benchmark applications to eval-
uate the effectiveness of the stash for current GPU applica-
tions. The applications are from Rodinia [12] (LUD - 256x256,
Backprop/BP - 32 KB, NW - 512x512, and Pathfinder/PF -
10x100K), Parboil [34] (SGEMM - A: 128x96, B: 96x160 and
Stencil: 128x128x4, 4 iterations), and Computer Vision [10]
(SURF- 66 KB image). All applications were selected for
their use of the scratchpad. We manually modified each ap-
plication to use a unified shared memory address space (i.e.,
we removed all explicit copies between the CPU and GPU
address spaces) and added the appropriate map calls based
on the different stash modes of operation (from Section 3.3).
For information on each application’s mapping types, see [24].
We use only a single CPU core and do not parallelize these
applications because they perform very little work on the CPU.

6. Results
6.1. Access Energy Comparisons
Table 3 shows per access energy for various hardware compo-
nents used in our simulations. The table shows that scratchpad
access energy (no misses for scratchpad accesses) is 29% of
the L1 cache hit energy. Stash’s hit energy is comparable to
that of scratchpad and its miss energy is 41% of the L1 cache
miss energy. Thus accessing the stash is more energy-efficient
than a cache and the stash’s hit energy is comparable to that
of a scratchpad.
6.2. Microbenchmarks
Figure 5 shows the execution time, energy, GPU instruction
count, and network traffic for our microbenchmarks using
scratchpad (Scratch), cache (Cache), scratchpad with DMA
(ScratchGD), and stash (Stash). We omit the remaining config-
urations (ScratchG and StashG) because the microbenchmarks
(except Pollution) do not have any global memory accesses,
so ScratchG is identical to Scratch and StashG is identical to

8We do not model a TLB miss, so all our TLB accesses are charged as if
they are hits.
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Figure 5: Comparison of microbenchmarks. The bars are nor-
malized to the Scratch configuration.

Stash. The energy bars are subdivided by where energy is
consumed: GPU core,9 L1 cache, scratchpad/stash, L2 cache,
or network. Network traffic bars are subdivided by message
type: read, write, or writeback.

Our results show that, on average, the stash reduces exe-
cution time and consumes less energy than the scratchpad,
cache, and DMA configurations – 13%, 27%, and 14% lower
execution time, respectively and 35%, 53%, and 32% less en-
ergy, respectively. Overall, the microbenchmark results show
that (a) the stash performs better than scratchpad, caches, and
scratchpad with DMA; and (b) data structures and access pat-
terns that are currently unsuitable for scratchpad storage can
be efficiently mapped to stash. Next we discuss the sources of
these benefits for each configuration.

9GPU core+ includes the instruction cache, constant cache, register file,
SFU, FPU, scheduler, and the core pipeline.

Scratchpad vs. Stash
Compared with the scratchpad configuration, stash provides

the following global addressing and global visibility benefits:
Implicit data movement: By implicitly transferring data to
local memory, Stash executes 40% fewer instructions than
Scratch for the Implicit benchmark and decreases execution
time by 15% and energy consumption by 34%.
No cache pollution: Unlike scratchpads, stash does not access
the cache when transferring data to or from local memory. By
avoiding cache pollution, Stash consumes 42% less energy and
reduces execution time by 31% in the Pollution benchmark.
On-demand loads into structures: The On-demand mi-
crobenchmark results show the advantages of on-demand
loads. Since stash only transfers the data it accesses into
local memory, Stash reduces energy consumption by 61%
and execution time by 26% relative to Scratch, which must
transfer the entire data array to and from the local memory.
Lazy writebacks/Reuse: The Reuse microbenchmark demon-
strates how the the stash’s lazy writebacks enable data reuse
across kernels. By avoiding repeated transfers, Stash con-
sumes 74% less energy and executes in 35% less time than
Scratch.

The primary benefit of scratchpad is its energy efficient
access. Scratchpad has less hardware overhead than stash and
does not require a state check on each access. However, the
software overhead required to load and write out data limits
the use cases of scratchpad to regular data that is accessed
frequently within a kernel. By adding global visibility and
global addressability, stash memory eliminates this software
overhead and can attain the energy efficiency of scratchpad
(and higher) on a much larger class of programs.
Cache vs. Stash

Compared to cache, stash benefits from direct addressability
and compact storage. With direct addressability, stash accesses
do not need a tag lookup, do not incur conflict misses, and only
need to perform address translation on a miss. Thus a stash
access consumes less energy than a cache access for both hits
and misses and the stash reduces energy by 35% on average.

In addition to the benefits from direct addressing, the Pollu-
tion and Reuse microbenchmarks also demonstrate the bene-
fits of compact storage. In these microbenchmarks the cache
configuration repeatedly evicts and reloads data because it
is limited by associativity and cache line storage granularity.
Thus it cannot efficiently store a strided array. Because the
stash provides compact storage and direct addressability, it
outperforms the cache for these microbenchmarks: up to 71%
in energy and up to 22% in execution time.

Cache is able to store much more irregular structures and
is able to address a much larger global data space than stash.
However, when a data structure is linearizable in memory
and can fit compactly in the stash space, stash can provide
much more efficient access than cache with significantly less
overhead than scratchpad.
ScratchGD vs. Stash

Applying DMA to a scratchpad configuration mitigates
many of the scratchpad’s inefficiencies by preloading the data
directly into the scratchpad. Even so, such a configuration



still lacks many of the benefits of global addressability and
visibility present in stash. First, since scratchpads are not
globally addressable, DMA must explicitly transfer all data
to and from the scratchpad before and after each kernel. All
threads must wait for the entire DMA load to complete before
accessing the array, which can stall threads unnecessarily and
create bursty traffic in the network. Second, DMA must trans-
fer all data in the mapped array whether or not it is accessed
by the program. The On-demand microbenchmark highlights
this problem: when accesses are sparse and unpredictable
stash achieves 48% lower energy and 48% less network traffic.
Third, since scratchpad is not globally visible, DMA is unable
to take advantage of reuse across kernels; therefore, stash sees
83% traffic reduction, 63% energy reduction, and 26% exe-
cution time reduction in the Reuse microbenchmark. DMA
also incurs additional local memory accesses compared with
stash because it accesses the scratchpad at the DMA load, the
program access, and the DMA store. These downsides cause
DMA to consume additional energy than the stash: Stash’s
stash/scratchpad energy component is 46% lower than DMA’s
on average.

Pollution’s network traffic is 17% lower with DMA com-
pared to stash. In Pollution, the stash’s registration requests
increase traffic when data is evicted from the stash before
its next use because stash issues both registration and write-
back requests while DMA only issues writeback requests. In
general though, global visibility and addressability improve
performance and energy and make stash feasible for a wider
range of data access patterns.

These results validate our claim that the stash combines the
advantages of scratchpads and caches into a single efficient
memory organization. Compared to a scratchpad, the stash
is globally addressable and visible; compared to a cache, the
stash is directly addressable with more efficient lookups and
provides compact storage. Compared with a non-blocking
DMA engine, the stash is globally addressable and visible and
can transfer data on-demand. Overall, the stash configurations
always outperform the scratchpad and cache configurations,
even in situations where a scratchpad or DMA engine would
not traditionally be used, while also providing decreased net-
work traffic and energy consumption.
6.3. Applications
Figure 6 shows execution time and energy for our 7 applica-
tions on all configurations except ScratchGD, normalized to
Scratch. We omit the network traffic and instruction count
graphs [24] for space. We also omit details on ScratchGD
for space and because its results are similar to StashG.10 Cur-
rent applications do not fully exploit the benefits of stash
over a DMA-enhanced scratchpad (e.g., on-demand accesses
and cross-kernel reuse); nevertheless, our results show that
the stash is comparable to such an enhanced scratchpad [24]
for current applications and significantly better for future use
cases (Section 6.2).

Compared to other configurations in Figure 6, stash im-
proves both performance and energy: compared to Scratch
(the best scratchpad version) and Cache, on average StashG

10Adding DMA to ScratchG outperforms adding it to Scratch.

(the best stash version) reduces execution time by 10% and
12% (max 22% and 31%), respectively, while decreasing en-
ergy by 16% and 32% (max 30% and 51%), respectively. Next
we analyze these results in more detail.
Scratch vs. ScratchG vs. Cache

Figure 6a shows that ScratchG is usually worse than (and
at best comparable to) Scratch, in terms of both execution
time and energy (7% and 12% worse, respectively, on aver-
age). This is because the global accesses that are converted
to scratchpad accesses increase the overall instruction count
(the global accesses are better off being global as there is no
temporal locality for these accesses).

Comparing Cache and Scratch, we find that converting
scratchpad accesses to global (cache) accesses, in general,
does not improve performance and increases energy consump-
tion (PF is one notable exception).

These results show that overall, the allocation of memory
locations to the scratchpad in the original applications is rea-
sonable for our baseline system. We therefore compare only
the Scratch configuration to Stash and StashG below.
Scratch vs. Stash vs. StashG

In contrast to the scratchpad, moving all global data to the
stash is (modestly) beneficial – compared to Stash, StashG
reduces execution time by 3% and energy by 7% on average.
This shows that more data access patterns can take advantage
of the stash.

Figure 6a shows that both stash configurations reduce ex-
ecution time compared to Scratch. Stash reduces execution
time compared to Scratch by exploiting the stash’s global
addressability and visibility. StashG shows a further mod-
est improvement in execution time by exploiting the stash’s
ability to remove index computations (index computations
performed by the core for a global access are now performed
more efficiently by the stash−map in hardware). As a result,
StashG reduces execution time by an average of 10% (max
22%) compared to Scratch.

Figure 6b shows that the stash configurations also reduce
energy. Compared to Scratch, Stash uses the stash’s global
addressability to remove explicit copies and reduce both GPU
core energy and L1 cache energy. By converting global ac-
cesses to stash accesses, StashG reduces energy even further.
There are two positive energy implications when the global
accesses are converted to stash accesses: (i) a stash access is
more energy-efficient compared to a cache access; and (ii) the
index computations performed by the stash-map mentioned
above consume less energy (which reduces ‘GPU core+’ por-
tion for StashG compared to Stash). These advantages help
StashG to reduce energy by 16% (max 30%) compared to
Scratch.

Overall, these results show that the stash effectively com-
bines the benefits of scratchpads and caches to provide higher
performance and lower energy even for current applications
that are not designed to exploit the stash’s new use cases.

7. Related Work
There is much prior work on improving private memories for
CPUs and GPUs. Table 4 compares the most closely related
work to stash using the benefits from Table 1:
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Figure 6: Comparison of configurations for the seven benchmarks. The bars are normalized to the Scratch configuration.

Feature Benefit Bypass Change Data Elide Virtual Private DMAs Stash
L1 [4] Layout [11, 13] Tag [33, 39] Mems [15, 16, 17, 28] [9, 21]

Directly addressed
No address translation HW access 3 7 7, 3 3 3 3 (on hits)
No tag access 3 7 3 (on hits) 7 3 3
No conflict misses 3 7 7 3 3 3

Compact storage Efficient use of SRAM storage 3 3 7 3 3 3

Global addressing
Implicit data movement 7 3 3 7 7 3
No pollution of other memories 3 3 3 3 3 3
On-demand loads into structure 7 3 3 7 7 3

Global visibility Lazy writebacks to global AS 7 3 3 7 7 3
Reuse across kernels or phases 7 3 3 Partial 7 3

Applied to GPU 3 7, 3 7 7, 7, 7, 3 3 3

Table 4: Comparison of stash and prior work.

Bypassing L1: (MUBUF [4])): L1 bypass does not pollute
the L1 when transferring data between global memory and the
scratchpad, but does not offer any other benefits of the stash.

Change Data Layout: (Impulse [11], Dymaxion [13]): By
compacting data that will be accessed together, this technique
provides an advantage over conventional caches, but does not
explicitly provide other benefits of scratchpads.

Elide Tag: (TLC [33], TCE [39]): This technique optimizes
conventional caches by removing the need for tag accesses
(and TLB accesses for TCE) on hits. Thus, this technique
provides some of the benefits scratchpads provide in addition
to the benefits of caches. However, it relies on high cache hit
rates (which are not common for GPUs) and does not remove
conflict misses or provide compact storage of the stash.

Virtual Private Memories (VLS [17], Hybrid Cache [15],
BiN [16], Accelerator Store [28]): Virtualizing private memo-
ries like scratchpads provides many of the benefits of scratch-
pads and caches. However, it requires tag checks and has
explicit data movement which prevents lazily writing back
data to the global address space. Furthermore, these tech-
niques do not support on-demand loads11 and only partially
support reuse.12

11VLS does on-demand accesses after thread migration on a context switch,
but the initial loads into the virtual private store are through DMA. Although
we do not discuss context switches here, the stash’s global visibility and
coherence means that we can lazily write back stash data on context switches.

12In VLS, if two cores want to read/write the same global data conditionally
in alternate phases in their VLS’s, then the cores have to write back the data
at the end of the phase even if the conditional writes don’t happen.



DMAs: (CudaDMA [9], D2MA [21]): A DMA engine on the
GPU can efficiently move data into the scratchpad without
incurring excessive instruction overhead and polluting other
memories. However, as discussed earlier, it does not pro-
vide the benefits of on-demand loads (beneficial with control
divergence), lazy writebacks, and reuse across kernels.

In summary, while these techniques provides some of the
same benefits as the stash, none of them provide all of the
benefits.

8. Conclusion
We present a new memory organization, stash, that combines
the performance and energy benefits of caches and scratchpads.
Like a scratchpad, the stash provides compact storage and
does not have conflict misses or overheads from tags and TLB
accesses. Like a cache, the stash is globally addressable and
visible, enabling implicit and on-demand data movement and
increased data reuse. The stash is a forward looking memory
organization that improves results for current applications and
increases use cases for heterogeneous systems.

Our work enables many new research opportunities. We
plan to make the stash even more efficient by applying opti-
mizations such as prefetching, providing a flexible (vs. cache
line based) communication granularity, and a mechanism to
bypass the indirection of the registry lookup by determining
the remote location of data. The stash’s ability to reuse data
also opens up possibilities for new stash-aware scheduling
algorithms. Using dynamically reconfigurable SRAMs will
allow the stash and cache to use different sizes for different
applications. We also plan to explore automating stash map-
pings with compiler support. More broadly, we would like to
expand the stash idea to other specialized private memories
in the context of other compute units (e.g., CPUs and custom
accelerators) to include them in the unified, coherent address
space without losing the benefits of specialization.
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