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Abstract
Developing software applications for emerging and fu-
ture heterogeneous systems with diverse combinations of
hardware is significantly harder than for homogeneous
multicore systems. In this paper, we identify three root
causes that underlie the programming challenges: (1) di-
verse parallelism models; (2) diverse memory architec-
tures; and (3) diverse hardware instruction set seman-
tics. We believe that these issues must be addressed us-
ing a language-neutral, virtual instruction set layer that
abstracts away most of the low-level details of hardware,
an approach we call Virtual Instruction Set Computing.
Most importantly, the virtual instruction set must ab-
stract away and unify the diverse forms of parallelism
and memory architectures using only one or two models
of parallelism. We discuss how this approach can solve
the root causes of the programmability challenges, illus-
trate the design with an example, and discuss the research
challenges that arise in realizing this vision.

1 Introduction
The future of computing is heterogeneous. Single chips
currently exist with several billion transistors, and this
number will continue to increase for at least the next
decade [9]. However, power dissipation in these chips
is an increasing problem, especially given the limited
power envelopes of battery-powered devices. Given this,
we have two options: turn off large portions of the chip
(the problem known as Dark Silicon [20]) or find more
power efficient options to keep the transistors on.

Heterogeneous computing falls into the second cate-
gory. It provides the ability to integrate a variety of pro-
cessing elements, such as general-purpose cores, GPUs,
DSPs, FPGAs, and custom or semi-custom hardware into
a single system. If applications can execute code on the
device which best suits it, then heterogeneous systems
can provide higher energy efficiency than conventional
processors. In the best case, customized hardware accel-
erators have been shown to provide 100x-1000x better
power efficiency for specific computations [23, 26].
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However, there are numerous challenges to getting
such a system to operate effectively and efficiently. One
major challenge is the difficulty of programming appli-
cations to use diverse computing elements. We identify
three fundamental root causes that underlie these chal-
lenges: (1) diverse models of parallelism; (2) diverse
memory architectures; and (3) diverse hardware instruc-
tion sets and execution semantics. We discuss these root
causes and the challenges they engender in Section 2.

In this paper, we describe a broad vision and some
preliminary design choices for solving the programma-
bility problem by eliminating all these three root causes.
We believe that this can be achieved only by abstract-
ing away the differences in heterogeneous hardware, and
presenting a more uniform hardware abstraction across
devices to software. More specifically, using a low-level,
language-neutral, virtual instruction set can encapsulate
all the relevant programmable hardware components on
target systems. In this instruction set, source-level appli-
cations are compiled, optimized, and shipped as “virtual
object code” and then translated down to a specific hard-
ware configuration, usually at install time, using system-
specific compiler back ends (“translators”). We call this
strategy Virtual Instruction Set Computing (or VISC, as
opposed to CISC or RISC) [2].

This broad strategy is not new – it has been used in
a few commercial systems such as IBM System/38 and
AS/400, Transmeta processors, NVIDIA’s PTX and Mi-
crosoft’s DirectCompute [16, 36, 14, 18, 32, 1] and ex-
plored in a few research projects [19, 35, 2]. PTX and Di-
rectCompute have used this approach very successfully
to abstract away families of GPUs and are strong evi-
dence that the VISC approach is commercially viable and
can deliver high performance. Addressing a wider range
of heterogeneous hardware, however, requires solving all
the three root causes above. PTX and DirectCompute
only partially address the challenges of diverse memory
architectures and of diverse hardware instruction sets, fo-
cusing only on the case of GPUs. We discuss further de-
tails of these and other current efforts in Section 3.

The key novelty in our work is that our instruction set
exposes a very small number of models of parallelism
and a few memory abstractions essential for high per-
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Figure 1: System Organization for Virtual Instruction Set Computing in a Heterogeneous System

formance algorithm development and tuning. Together,
we expect that these abstractions will effectively capture
a wide range of heterogeneous hardware, which would
greatly simplify major programming challenges such as
algorithm design, source level portability, and perfor-
mance tuning. Our overall approach is illustrated in Fig-
ure 1 and is discussed further in Section 4. We conclude
by discussing open research problems in Section 5.

2 Programmability Challenges
Heterogeneous parallel computing systems, including
both mobile System-on-Chip (SOC) designs such as
Qualcomm’s Snapdragon and nVidia’s Tesla, or high-
end supercomputers like Cray’s BlueWaters (which has
many GPU coprocessors) or Convey’s FPGA-based HC-
1, raise numerous difficult programming challenges. We
believe these challenges arise from three fundamental
root causes and we first discuss these root causes and
then outline the challenges they engender.

Root Causes of Programmability Challenges:
(1) Diverse models of parallelism: Different hardware
components in heterogeneous systems support different
models of parallelism. We tentatively identify five broad
classes of programmable hardware that have qualita-
tively different models of parallelism:

1. General purpose cores Flexible multithreading
2. Vector hardware Vector parallelism
3. GPUs Restrictive data parallelism
4. FPGAs Customized dataflow
5. Custom accelerators Various forms

In addition, applications running on multiple such
components may exhibit asynchronous or synchronous
parallelism relative to each other.
(2) Diverse memory architectures: With the different
parallel models come deep differences in the memory
system. Common choices in the various components
above include cache-coherent memory hierarchies, vec-
tor register files, private or “scratchpad” memory, stream
buffers, and custom memory designs used in custom ac-
celerators. These differences in memory architectures
strongly influence both algorithm design and application
programming. Moreover, the performance tradeoffs are
becoming even more complex as new architectures pro-
vide more options, e.g., nVidia’s Fermi architecture al-
lows a 64 KB block of SRAM to be partitioned flexibly
into part L1 cache and part private scratchpad memory.
(3) Diverse hardware-level instruction sets and exe-
cution semantics: Finally, the various hardware compo-
nents have very different instruction sets, register archi-
tectures, performance characteristics, and execution se-
mantics. These differences have an especially profound
effect on object-code portability. They also have other
negative effects, described below.

Major Programmability Challenges:
These fundamental forms of diversity create deep pro-
grammability challenges for heterogeneous systems.
First, it is extremely difficult to design a single algorithm
for a given problem that works well across a range of
such different models of parallelism, with such different
memory systems, as previous work has shown [33, 4].
We envisage two options to address this problem: design
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algorithms that achieve good, but not optimal, perfor-
mance across the targeted range of hardware, or use mul-
tiple algorithms for a given problem and select among
them when the actual hardware configuration is known
(e.g., at install time, load time, or run time) [28, 4]. In
practice, both approaches will likely be necessary.

Second, it is much more difficult to design effective
source-level programming languages for heterogeneous
systems. A single programming language or library typ-
ically supports only one or two models of parallelism.
For example, CUDA, OpenCL and AMP naturally sup-
port fine-grain data parallelism, with a macro function
replicated across a large number of threads, but other
parallelism models (like more flexible dataflow) are not
specifically addressed. Similarly, BlueSpec [30] and
Lime [5], which have proved successful for FPGAs, are
both dataflow models but it is not clear whether these can
be mapped effectively to GPUs. The consequence today
is that, a programmer must program each hardware com-
ponent differently, which creates a huge barrier to entry
for widespread use of heterogeneous hardware.

A third challenge is source code portability. Hetero-
geneous systems can provide different combinations of
hardware, both within a single manufacturer’s family
of devices and across different manufacturers’ devices.
This makes source-code level portability difficult, in two
ways. First, each component must solve the algorithm
portability problem (above). Second, compilers must
map source code embodying one or more algorithms for
each component down to the various hardware compo-
nents on which those algorithms must run. This task is
greatly complicated by all three forms of diversity.

Fourth, performance tuning for heterogeneous sys-
tems will also be significantly more complex. The dis-
parate parallelism models, memory architectures, and
lower-level performance details require significantly dif-
ferent performance models and tuning strategies. Be-
cause of these disparities, the programmer training, soft-
ware tools, and application libraries all become pro-
hibitively expensive as the number of different hardware
components grows.

Finally, object-code portability across the same and
different manufacturers’ devices is essential as well. An
application vendor must be able to ship a single software
version for a broad range of devices – it is impractical to
create, test, market and support different versions of an
application package for all the different devices running
a single platform, e.g., all the smartphones running An-
droid. Today, Android solves this problem by using Java
bytecode, but only for CPU application code: few appli-
cation components take advantage of the on-phone GPU
or DSPs, and those are usually native libraries. More-
over, the debuggers, profilers and performance tools for
a family of heterogeneous systems must support the full

range of available hardware, both within a single system
and also across different system configurations. Because
both tuning and debugging often need to go down to the
level of object code, these tools become expensive to de-
velop, learn and use for each family of hardware.

3 State of the Art
Most of the existing research on programming heteroge-
neous systems has focused on source level programming
models and languages. Existing languages like CUDA,
OpenCL, AMP and OpenACC are primarily focused on
GPU computing (The OpenMP standards committee is
developing OpenMP extensions for accelerators, which
are expected to be very similar to OpenACC [6].) In
particular, they primarily support a single parallelism
model: parallel execution of a kernel function replicated
across a large number of cores, with explicit copying of
data from host to device and back. (OpenCL supports
task parallelism, but that model is a poor match to GPUs,
which are the primary targets of existing OpenCL imple-
mentations. For example, it has been shown that CUDA
programs that aren’t data parallel often perform poorly
on GPUs [34].) All commercial implementations we
know of focus on GPUs and general purpose multicore
CPUs and do not address other components in a hetero-
geneous system.

The Liquid Metal project [24] aims to program hy-
brid CPU/accelerator code, using a single object-oriented
programming language called Lime. Their efforts to date
have focused on CPU/FPGA systems. The FPGA part is
compiled first to a language based on a dataflow graph of
filters connected by input/output queues, which in turn
is compiled to Verilog. The approach is very specific to
FPGAs and it is not clear if it would be effective for more
diverse components.

Delite [11] takes a promising approach. Broadly,
Delite provides a framework to create implicitly parallel
domain-specific languages (DSLs) and a runtime to ex-
ecute these parallel DSLs on a heterogeneous platform.
The Delite run-time creates a dynamic execution graph
of method executions along with their dependencies, and
this graph is then scheduled across the system. Because
DSLs can be flexible and high-level, the DSL approach
could be used to shield the programmer from most of
the differences between different heterogeneous devices.
In practice, however, this puts enormous burden on the
compiler and run-time system to translate the high-level
language to a variety of different hardware components
to achieve adequate performance. For example, in Delite,
regular data-parallel kernels are automatically translated
to the target device language (e.g., CUDA for GPU), but
for irregular ones, the DSL author is required to provide a
hand-written CUDA kernel, which undercuts the promise
of high-level programming.

At the object code level, the NVIDIA’s PTX and
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Microsoft’s DirectCompute are virtual instruction sets
for GPU computing. Both these systems aim to sup-
port a stable programming model and instruction set
(for CUDA and AMP programs respectively), while also
providing efficient code. These instruction sets expose
a data-parallel programming model and provide object
code portability, PTX across NVIDIA GPUs but Direct-
Compute across a wide range of GPUs. Their primary
limitation is that they do not support other classes of
hardware. In particular, they do not aim to address the
first root cause we have identified – expose only a restric-
tive throughput-oriented data parallelism and do not ex-
pose other models of parallelism like dataflow-style par-
allelism, or general task parallelism required across dif-
ferent compute elements. Also PTX and DirectCompute
only partially address the second root cause – abstract
away memory architectures only within a single class of
heterogeneous components, GPUs and thus not support-
ing other classes of heterogeneous components. Never-
theless, they do provide strong evidence that a virtual
instruction set approach is commercially viable, highly
scalable, and can be used to achieve high performance.

4 The VISC Approach
4.1 Basics of The VISC Design Strategy
We propose to leverage Virtual Instruction Set Comput-
ing (VISC) to address all three root causes of the pro-
grammability challenges for heterogeneous systems. Our
system organization is shown in Figure 1. The key point
in the figure is that the only software components that can
“see” the hardware details in a system are the translators
(i.e., the compiler back ends), a minimal set of low-level
OS components sufficient to implement a full-featured
OS kernel [17], and potentially some device drivers. The
rest of the software stack, including most of an OS ker-
nel, higher-level language compilers and other devel-
opment tools, application-independent libraries, frame-
works and middleware, and all application software, live
above the virtual ISA.

To our knowledge, the VISC approach has never be-
fore been applied to multiple kinds of heterogeneous
hardware, which presents unique and difficult chal-
lenges. To solve the three root causes of programmabil-
ity problems described earlier, the VISC approach must
have three features: (i) A very small number of funda-
mental abstractions for parallel computation (preferably,
only one or two) in the virtual instruction set; (ii) abstrac-
tions for memory and communication that support algo-
rithm design, source level language compilation, and ap-
plication performance tuning; and (iii) a uniform instruc-
tion set that can be mapped down to different hardware
instruction sets and execution models in different hetero-
geneous hardware components. We discuss the first two
briefly, in turn. The third feature we expect to inherit di-

rectly by building our virtual ISA on top of the LLVM
instruction set, which has already proven extremely ef-
fective at abstracting away a wide range of sequential
hardware instructions sets [2, 27, 29].

4.2 Abstractions for Individual Elements
Because the Virtual ISA is an abstraction of the hard-
ware, its design must be driven by the classes of hard-
ware it represents. It is important that the virtual ISA not
simply be a union of 5 different kinds of abstractions for
the five broad classes of hardware identified in Section 2.

We expect that virtually all the parallelism exploited in
individual non-CPU elements will be data parallelism in
the broadest sense, including both regular and irregular
data parallelism. Therefore, we focus on mapping data
parallelism to individual computing elements, and leave
more general functional or task parallelism to be handled
by parallel execution across elements, discussed together
with memory abstractions, below.

In designing the virtual ISA for individual elements,
we have considered several parallelism models that have
been used for different hardware elements today, as well
as combinations of them that can be integrated cleanly.
In the interests of space, we omit the discussions of our
analysis and describe the tentative outcome instead. All
these choices will build on some variant of the sequential
LLVM instruction set.

Our tentative strategy is to use a combination of two
parallelism abstractions: vector parallelism and general-
ized macro dataflow graphs. A virtual vector instruction
set, such as Vector LLVA [8] or Vapor SIMD [31], is an
obvious candidate because vectorizable code is likely to
capture a large category of codes (though not all) that
run successfully on GPUs, FPGAs, and vector hardware.
Moreover, when applicable, vector instructions are sim-
ple, have intuitive deterministic semantics, and can be
made highly portable through careful design of the vector
lengths, control flow, memory alignment, and operation
abstractions [8, 31].

For computations not cleanly expressible as vector
code, our second choice is a general dataflow graph,
which may include fine-grain dataflow such as Static Sin-
gle Assignment (SSA) form within procedures (which al-
ready exists in LLVM) and “macro dataflow” representa-
tions for coarse-grain data flow. This dataflow graph will
not be “pure dataflow” in the sense that individual nodes
may include side-effects, i.e,. reads and writes, to shared
memory, because explicitly managing memory accesses
may be important for performance tuning and front-end
compiler optimization. Although these side effects may
cause concurrency errors like data races or unintentional
non-determinism, it is important to note that the virtual
ISA is not a source-level programming language but an
object code language: guaranteeing correctness proper-
ties like the absence of concurrency errors is not the re-
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sponsibility of the virtual ISA and is instead left to source
level languages.

We believe that such a (less restrictive) dataflow graph
language will be able to capture all the forms of data
parallelism. For example, the implicit “grid of ker-
nel functions” used in PTX [32], Renderscript [3], We-
bGL [37], and DirectCompute [1] are naturally express-
ible as dataflow graphs. While dataflow graphs can also
capture vectorizable code, they may be less efficient and
less compact than vector instructions, which is why we
expect to use vector instructions as well.

Moreover, having one monolithic dataflow graph for
an entire application would severely restrict the modu-
larity and flexibility of the code. We therefore propose
to make the dataflow graphs hierarchical by simply al-
lowing the individual nodes in the overall graph to be
either a vector subprogram, or another dataflow graph
of its own. Individual nodes in the graph would repre-
sent computation within each element, either as simple
vector code or rich fine-grain dataflow graphs. Different
nodes can use different choices for different kernels. To-
gether this combination would give an elegant, yet pow-
erful, mechanism for expressing parallelism across an
entire heterogeneous system since a wide range of high-
level data-parallel programming models can be compiled
efficiently down to either a dataflow model or a vector
model, including OpenCL, Array Building Blocks [21],
CUDA, Renderscript, OpenMP, Fortran 9x, Hierarchi-
cal Tiled Arrays (HTAs) [7, 22], Concurrent Collec-
tions [10], Lime, StreamIt [38], and others.

In Listing 1, we give an example of the hierarchical
dataflow representation of the FFT radix-2 algorithm,
which is the simplest and most commonly used form
of the Cooley and Tukey FFT algorithm [15], in our
proposed macro dataflow language. We have studied
two implementations of this algorithm, an FPGA im-
plementation from the ERCBench benchmark suite [12],
and a GPU implementation from the Parboil bench-
mark suite [25] and tried to capture them in a common
dataflow representation.

Figure 2 gives the pictorial view of the dataflow graph
created in Listing 1. FFT is a node in the graph, which
in turn consists of log2 N Stage nodes, where each Stage
node further consists of N/2 Butterfly nodes. In main()
we first describe the node hierarchy in the dataflow
graph. Next we use the generate edges() function to
create the dataflow edge connections among different
nodes in the graph. As shown in the figure we have
classified these edges into three types (Estage−stage,
Ebutterfly−stage and Estage−fft) based on the type of
nodes they connect. Additionally, these edges are capa-
ble of carrying user-defined data types such as Complex.
The example shows that the dataflow graph is capable
of exposing the parallelism exploited by the GPU and

log2N stages

Stage [log2N − 1]

A

B

A + ωk−1
0 B

A− ωk−1
0 B

A

B

A + ωk−1
1 B

A− ωk−1
1 B

A

B

A + ωk−1
N/2−1

B

A− ωk−1
N/2−1

B

[ωk−1
0 . . . ωk−1

N/2−1]

A

B

A + ω0
0B

A− ω0
0B

A

B

A + ω0
1B

A− ω0
1B

A

B

A + ω0
N/2−1B

A− ω0
N/2−1B

[ω0
0 . . . ω

0
N/2−1]

Stage [0]

Estage−stage
Efft−stage

Estage−butterfly

Butterfly [0]

Butterfly [1]

Butterfly [N/2 − 1]

Butterfly [0]

Butterfly [1]

Butterfly [N/2 − 1]

FFT Node

Figure 2: Macro Dataflow representation of FFT
EX−Y denotes dataflow edges between nodes X and Y .

FPGA implementations. The utility of abstracting away
the low level details of data movement through dataflow
edges is given in Section 4.3.

4.3 Memory System Abstractions
An important aspect of VISC is what abstraction of
the overall memory system we present to programmers
for coordinating parallelism across compute elements.
When programming GPUs in CUDA or OpenCL, we
need to explicitly manage data movement between the
CPU and the GPU, which is an additional overhead to
the programmer. Additionally, newer accelerators like
GPUs based on NVIDIA’s Fermi architecture combine
increasingly flexible options for caches or scratchpad
memory. (In an allied research project, we are exploring
much more flexible memory system designs, combining
highly reconfigurable SRAM memory blocks for energy
efficiency and performance.) Unfortunately, these kinds
of designs enormously complicate the task of applica-
tion developers, who have to optimize their code to take
advantage of such hardware features. Our VISC design
approach aims to enable such flexibility for hardware de-
signers, without putting an excessive burden on applica-
tion designers. Applications should be able to express
an overall computation in a simple and abstract compu-
tational model. Such a model would convey the essential
coordination and data transfer requirements and leave the
low-level mapping and execution details to the underly-
ing compiler, scheduler and hardware.

The hierarchical dataflow graphs proposed in Sec-
tion 4.2 provide a clean, flexible communication and co-
ordination abstraction across computing elements. For
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/ /−−−−−−−−−−Globa l d e c l a r a t i o n s−−−−−−−−−−
s t r u c t Complex = t y p e { f l o a t r e a l , f l o a t imag } ;
c o n s t i n t k = log2 N ;
Node FFT ( Complex In [ ] ) : ( Complex Out [ ] ) ;
Node S t a g e ( Complex In [ ] , Complex ω [ ] )

: ( Complex Out [ ] ) ;
Node B u t t e r f l y ( Complex A, Complex B , Complex ω )

: ( Complex O1 , Complex O2 ) ;
/ /−−−−−−−−−−−−−−−F u n c t i o n s−−−−−−−−−−−−−−−
Complex complexAdd ( Complex A, Complex B) {

/ / complexSub ( ) , complexMul ( ) are s i m i l a r
Complex r e s u l t ;
r e s u l t . r e a l = A. r e a l + B . r e a l ;
r e s u l t . imag = A. imag + B . imag ;
re turn r e s u l t ;

}
( Complex , Complex ) c o m p u t e B u t t e r f l y ( Complex A,

Complex B , Complex ω ) {
Complex temp = complexMul (B , ω ) ;
Complex O1 = complexAdd (A, temp ) ; / / A+Bω
Complex O2 = complexSub (B , temp ) ; / / A−Bω
re turn ( O1 , O2 ) ;

}
main ( ) {

g e n e r a t e n o d e s ( ) ;
g e n e r a t e d a t a f l o w e d g e s ( ) ;

}
/ /−−−−−−−−Genera te node h i e r a r c h y−−−−−−−−
g e n e r a t e n o d e s ( ) {

B u t t e r f l y := Node 1 of c o m p u t e B u t t e r f l y ( ) ;
S t a g e := Node N/ 2 of B u t t e r f l y ;
FFT := Node k of S t a g e ;

}
/ /−−−−−−−−Genera te d a t a f l o w edges−−−−−−−−
g e n e r a t e d a t a f l o w e d g e s ( ) {

/ / Estage−stage : I n t e r−s t a g e edges
f o r i i n 0 t o k − 2 do

f o r j i n 0 t o N/2− 1 do
exp r = b j

2i
c ∗ 2i+1 + j mod 2i ;

S t a g e [ i ] . Out [2j ] => S t a g e [ i+ 1 ] . I n [ exp r ] ;
S t a g e [ i ] . Out [2j + 1 ] => S t a g e [ i+ 1 ] . I n [ exp r

+2i ] ;
/ / Ebutterfly−stage : Edges be tween a s t a g e and
/ / i t s b u t t e r f l y nodes
f o r i i n 0 t o k − 1 do

f o r j i n 0 t o N/2− 1 do
wi th ( S t a g e [ i ] ) {

In [ j ] => B u t t e r f l y [ j ] . A;
In [ j +N/2 ] => B u t t e r f l y [ j ] . B ;
ω [ j ] => B u t t e r f l y [ j ] . ω ;
B u t t e r f l y [ j ] . O1 => Out [2j ] ;
B u t t e r f l y [ j ] . O2 => Out [2j + 1 ] ;

}
/ / Estage−fft : Edges be tween FFT , s t a g e nodes
f o r m i n 0 t o N − 1 do

FFT . In [m ] => S t a g e [0 ] . I n [m ] ;
S t a g e [k − 1 ] . Out [m ] => FFT . Out [m ] ;

}

Listing 1: Example Dataflow Representation for FFT.
‘=>’ denotes an edge; ‘:=’ denotes a node definition.

instance, in Listing 1 we abstract away the data move-
ment details in the FPGA and GPU (e.g. CUDA mem-
cpy operations) through edges which move data from

the producer node to the consumer node. This dataflow
across elements can then be efficiently mapped to either
uncached local memories or to cache-coherent shared
memory. Although explicit loads and stores of the GPU
and FPGA implementations have been abstracted away
in this example, we do expect to need explicit loads and
stores, which is not uncommon in macro dataflow lan-
guages. For example, an alternative approach to express-
ing the FFT algorithm would be to use loads and stores
inside the Stage node for transferring data between suc-
cessive stages, instead of using explicit dataflow edges as
shown. (We omit that pseudocode for lack of space.)

5 Open Research Problems
We must solve several key problems to bring these ideas
to fruition. We must design a back-end compilation pro-
cess from the Virtual ISA to native code for each hard-
ware device, which can exploit Virtual ISA information
to perform hardware dependent optimizations. We must
develop compilation techniques that translate communi-
cation and data movement down to hardware with a va-
riety of memory architectures, e.g., some combination
of non-cached local memories, cache-coherent shared
memory, or streaming memory. We must design an
autotuning partitioner that decides how to partition the
program effectively between diverse hardware elements,
tune individual component code for specific hardware,
and guide the run-time scheduler. Finally, we must de-
sign run time schedulers that take advantage of informa-
tion extracted by autotuning ahead of time and the flex-
ibility offered by the Virtual ISA to optimize power and
execution time.

Another key direction of work is more effective,
software-aware memory organization. To minimize en-
ergy usage or to maximize performance in a heteroge-
neous system, depending on the computation, a given
set of data may ideally be stored as hardware-managed
cache lines, software-managed scratchpads with flexible
data granularities and layouts, arbitrary messages, vec-
tor registers, etc. Moreover, hardware caching today is
largely software-oblivious but there is much information
in software to optimize how memory is managed. In
prior work on the DeNovo architecture, we have success-
fully used program-level information about data sharing
and access for efficiencies in power, performance, and
complexity when managing data for homogeneous mul-
ticores with caches [13]. These ideas can be extended
for even greater benefits in heterogeneous systems. To
accomplish these gains, the Virtual ISA must provide
a general abstraction to exploit all such storage struc-
tures, the backend compiler must map this abstraction
efficiently, and the hardware must be designed to exploit
this flexibility.
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