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Abstract
Future microprocessors need low-cost solutions for reliable oper-
ation in the presence of failure-prone devices. A promising ap-
proach is to detect hardware faults by deploying low-cost monitors
of software-level symptoms of such faults. Recently, researchers
have shown these mechanisms work well, but there remains a non-
negligible risk that several faults may escape the symptom detectors
and result in silent data corruptions (SDCs).

Most prior evaluations of symptom-based detectors perform
fault injection campaigns on application benchmarks, where each
run simulates the impact of a fault injected at a hardware site at a
certain point in the application’s execution (application fault site).
Since the total number of application fault sites is very large (tril-
lions for standard benchmark suites), it is not feasible to study
all possible faults. Previous work therefore typically studies a ran-
domly selected sample of faults. Such studies do not provide any
feedback on the portions of the application where faults were not
injected. Some of those instructions may be vulnerable to SDCs,
and identifying them could allow protecting them through other
means if needed.

This paper presents Relyzer, an approach that systematically an-
alyzes all application fault sites and carefully picks a small sub-
set to perform selective fault injections for transient faults. Re-
lyzer employs novel fault pruning techniques that prune faults that
need detailed study by either predicting their outcomes or showing
them equivalent to other faults. We find that Relyzer prunes about
99.78% of the total faults across twelve applications studied here,
reducing the faults that require detailed simulation by 3 to 5 orders
of magnitude for most of the applications. Fault injection simu-
lations on the remaining faults can identify SDC causing faults in
the entire application. Some of Relyzer’s techniques rely on heuris-
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tics to determine fault equivalence. Our validation efforts show that
Relyzer determines fault outcomes with 96% accuracy, averaged
across all the applications studied here.

Categories and Subject Descriptors B.8.1 [Hardware]: Perfor-
mance and Reliability—Reliability, Testing, and Fault-Tolerance

General Terms Design, Experimentation, Measurement, Relia-
bility

Keywords Low-Cost Hardware Resiliency, Hardware Reliability
Evaluation, Silent Data Corruption, Transient Faults, Architecture

1. Introduction
As process technology scales, the increasingly smaller devices be-
come susceptible to a variety of in-field hardware failure sources;
e.g., high-energy particle strikes (soft-errors), voltage droops,
wear-out, and design bugs [4]. This increases the likelihood of a
hardware failure in the field. Future systems must therefore handle
such failures through in-field fault detection, diagnosis, repair, and
recovery mechanisms to guarantee continuous error-free operation.

Hardware fault detection mechanisms form a crucial part in de-
vising such reliability solutions. Traditional solutions use heavy
amounts of redundancy (in space or time) to detect hardware faults.
Owing to their prohibitive costs, such detection mechanisms are in-
creasingly unacceptable for modern commodity systems. Instead,
there is a growing recognition that a wide spectrum of the com-
modity space will accept only much lower cost solutions (in area,
power, and performance), perhaps at the cost of tolerating very oc-
cassional failures.

Recently, there has been a surge of research in software-level
symptom based fault detection techniques [5, 7, 13, 14, 16, 19,
20, 25] that provide promising such low-cost alternatives. These
techniques detect only those hardware faults that corrupt software
execution by monitoring for anomalous software behavior using
simple, low-cost monitors. Despite the simplicity of their detectors,
these techniques have demonstrated impressively high detection
rates. Unfortunately, some fraction of faults do escape the detection
mechanism and silently impact the correctness of the program
output. Such faults are called silent data corruptions or SDCs. As
an example, SWAT (SoftWare Anomaly Treatment) [8, 12, 22], a
state-of-the-art reliability solution, reports an SDC rate of<0.5%
across several (compute-intensive, media, and distributed client-
server) workloads for both permanent and transient faults in all
hardware units studied except the data-centric FPU.

By their nature, the effectiveness of symptom-based detection
solutions depends on the application running on the system and
when the fault manifests during the application’s execution. Com-
prehensive evaluation of the effectiveness for a given application



requires studying the impact of all faults of interest injected at each
cycle of the application’s execution (one at a time). Below, when we
refer to afault, we include both the hardware sitewhere a fault is
injected as well aswhen it is injected in an application’s execution
(the application site). After injecting a fault (at a given cycle), the
application must be allowed to run potentially to completion to de-
termine if the fault is masked, results in SDC, or is detected (in the
latter case, the execution may be stopped on detection). For applica-
tion benchmarks with billions of instructions, this translates (con-
servatively) into trillions of fault injection runs for most benchmark
suites and fault models of interest. Such a comprehensive fault in-
jection campaign is clearly infeasible.

While most symptom-based detection techniques have been
evaluated through fault injection campaigns [13, 14, 16], these
studies bound the experiment time by studying a randomly selected
sample of faults (typically of the order of thousands of faults per ap-
plication) out of all the faults possible (more than a trillion faults
for this study). While these methods may provide statistical guar-
antees SDC rates, certain faults that may be important to the appli-
cation may be sampled out. Equally important, such statistical sam-
pling provides virtually no feedback on which parts of the applica-
tion remain vulnerable (other than the few instructions where faults
were injected) and might need protection in other ways to reduce
the SDC rate. With the ever-increasing constraints on power, per-
formance, and area, such application-specific customization of re-
siliency solutions is desirable. Thus, for symptom-based detectors
to become comercially adopted, it is important to provide firmer
guarantees on SDC rates and to better identify the remaining vul-
nerable portions of the program to reduce the SDC rate.

This paper focuses on transient faults and seeks to dramatically
reduce the number of faults to simulate while still preserving the
ability to accurately determine the SDC rate and SDC vulnera-
ble portions of the application. As mentioned above, the number
of faults is large both due to the large number of hardware sites
(where) and application execution sites (when) that a fault could be
injected. There has been significant work in the literature to explore
the impact of where in the hardware faults are injected, including
understanding tradeoffs in injecting faults at the gate, microarchi-
tectural, and architectural levels [10, 11, 17] and extensive work on
notions of fault equivalence in the testing literature [1]. However,
there is limited work on when in the application execution should
faults be injected.

This paper presentsRelyzer, a resiliency analyzer that systemat-
ically analyzes all (dynamic) application sites to determine a mini-
mal set for when faults need to be injected.1 Since our focus is not
on the hardware sites, we choose two examples: transient single-bit
flip faults in (architectural) integer registers and in output latches
of address generation units.

Relyzer first lists all application sites that can be directly af-
fected by our chosen transient faults. For some of these faults,
Relyzer can directly predict their outcome (detection, masking, or
SDC) through simple static analysis and dynamic profiling of the
fault-free execution. These faults do not need detailed fault injec-
tion experiments. For the remaining faults, Relyzer primarily uses
the insight that faults propagating “similarly” through the program
are likely to result in similar outcomes. We propose novel heuris-
tics based on static and dynamic control flow and data flow to cap-
ture the notion of “similar” for faults in different types of instruc-
tions. Using these heuristics, we categorize application fault sites
into equivalence classes. We then select a representative from each
equivalence class and thoroughly study it through a detailed fault
injection experiment.

1 We only consider single-threaded applications in this workand leave the
exploration of multithreaded applications to future work.

Our results show that Relyzer significantly reduces the number
of faults that require detailed fault injection experiments. Relyzer
pruned about 99.78% of the total faults in the twelve applications
studied here (three to five orders of magnitude reduction for all
but one application). We validated the pruning techniques that use
heuristics by matching the fault injection outcomes of the represen-
tative faults against outcomes of a sample of faults they each repre-
sent. Each pruning technique and fault model combination individ-
ually gave an accuracy of>92%, averaged across all studied ap-
plications. Overall, with the combination of all pruning techniques,
Relyzer was able to correctly determine the outcomes of 96% of all
faults, averaged across all twelve applications studied.

Overall, Relyzer significantly reduces the number of application
fault sites that require thorough fault injection experiments, bring-
ing them to a point where studying virtually all of them becomes
practically viable. Further, it does so in a way that allows iden-
tifying the application sites vulnerable to SDCs (the equivalence
classes whose representatives result in SDCs). To our knowledge,
Relyzer is the first work to develop such a notion of fault equiva-
lence for application fault sites (analogous to that of hardware fault
equivalence). Section 5 describes the relationship with other work
that has similar, but not identical, goals [2, 6, 18, 23].

2. Fault Pruning Techniques
Relyzer systematically analyzes all application fault sites and care-
fully selects a small subset for thorough fault injection experiments
such that it can still estimate the outcomes of all the faults in the
application. To achieve this goal, Relyzer applies a set of pruning
techniques that are classified asknown-outcome andequivalence-
based pruning techniques. The known-outcome techniques largely
use static (and some dynamic) program analyses to predict the out-
come of a fault. The equivalence-based techniques prune faults by
showing them equivalent to others using static and dynamic analy-
ses and/or heurstics.

Relyzer first enumerates all the faults that can impact the appli-
cation. We require a fault-free execution trace for a given applica-
tion (and input) for this step. Each dynamic instruction instance in
the trace forms a potential application fault site. At this site, we con-
sider injecting faults in the hardware units that would be exercised
by this instruction (one fault at a time). Since our focus is on the
choice of application fault sites and not on exhaustively studying
all hardware faults, we choose to study transient faults (single bit
flips) in architectural integer registers and in output latches of ad-
dress generation units. As an example, consider an add instruction
with register operands g1, g2, and l1 as an instruction appearing
in the dynamic instruction trace. We consider injecting single-bit-
flips in the integer registers g1, g2, and l1 that are accessed by this
instruction (one at a time, in different bits). Faults in the address
generation unit will be considered only when it is exercised; i.e., in
load and store instructions.

While enumerating the list of all application fault sites, Relyzer
stores all the fault related information in a data structure called
the fault database, shown in figure 1. In particular, it stores the
identity of the static instruction (program counter), the hardware
fault sites that can affect the instruction (e.g., names of registers),
and the number of dynamic instances of the instruction. The rest of
the fields in figure 1 apply to specific pruning techniques and are
described with those techniques.

Relyzer next applies the fault pruning techniques on this initial
set of faults. While the fault pruning is being performed, all the re-
quired information for successful computation of overall SDC rate
and the SDC rate for each static instruction is logged in the fault
database (figure 1). Additionally, some dynamic information to as-
sist the later development of low-cost detectors can also be logged,
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Figure 1. Fault database. The first three fields in the first table store
basic information regarding a fault site and the static instruction.
The bit min and bit max fields indicate the amount of pruning per-
formed by the known-outcome pruning techniques – faults in the
bits between bit min and bit max are pruned and their predicted
outcome is recorded in the expected outcome field. The equiva-
lent instruction and the faulty unit ID fields store information for
the precise equivalence-based pruning techniques. The informa-
tion regarding pilots that are obtained by the store- and control-
equivalence based pruning techniques is stored in a separate table.
It also stores some extra information that can aid the development
of low-cost detectors.

but we leave the exploration of such information and detectors to
future work.

2.1 Known-outcome pruning technique

Bounding addresses: Transient hardware faults can make applica-
tions access memory locations that fall out of the range of the allo-
cated address space. Such accesses are likely to result in detectable
symptoms (e.g., fatal traps, segmentation faults, application aborts,
and kernel panic). SWAT employs detectors specifically to detect
such scenarios within recoverable latencies (e.g., out-of-bounds de-
tectors [21]). We do not need injection experiments to identify the
outcome of most such faults and can directly prune them as follows.

We determine the range of valid addresses, for both the stack
and the heap, by studying the dynamic memory profile of the ap-
plication. To keep our implementation simple, we monitor global
and heap addresses together. This also eliminates the problem of
distinguishing them from each other while profiling. This approx-
imation only makes our technique conservative if we assume that
the out-of-bounds detector can also detect faults in addresses that
make accesses cross the global-heap boundary.

Once we identify the range of the valid addresses, we prune
faults that would allow a memory instruction to access an invalid
address (e.g., faults in high order bits of the address when the fault-
free trace shows valid addresses are within lower order bits). This
technique is applicable to memory instructions (both loads and
stores).

Information for fault database: The known-outcome technique
prunes faults by declaring them as detected. Hence, very little
information is needed to be recorded in the fault database. We
record the range of the bits that are pruned in the bit min and
bit max field along with the estimated outcome (detected) in the
expected outcome field of the fault database (figure 1).

2.2 Equivalence-based pruning techniques

This class of pruning techniques eliminates faults that are equiva-
lent to each other from the initial set of faults and retains only the
representative faults for thorough fault injection experiments. We
further categorize pruning techniques in this section asprecise and

heuristics-based, based on whether they use accurate analyses or
heuristics to form the equivalence classes.

2.2.1 Precise equivalence

Def-use analysis: A register definition is created whenever a reg-
ister is used as a destination operand in an instruction. Faults in
the definition of a register have similar behavior to that of faults in
the first use of this definition. Therefore, we prune out faults in the
definition and retain faults in the first use. Note that this technique
prunes faults only in the definition and not in the uses. There can
be multiple uses of a definition, and faults in different uses may
have different fault propagation. Whenever a definition is pruned,
we record the information of the first use at the definition. This al-
lows relating the outcomes of the faults in the first use to those that
of the definition’s at a later stage.

Ideally, the destination register operands of all the instructions
should be pruned by this technique. In our experiments, however,
we prune faults in only those destination registers that have a
first use within the same basic-block. Since we implemented this
technique as a static program pass, accounting for this equalization
in the fault database (i.e., associating faults in the first use to that of
the definition’s) was non-trivial for the cases where the def to first-
use chains spanned across multiple basic blocks. Moreover, in the
presence of conditional move operations, it was unclear whether
a static pass can still prune faults without compromising on the
precise association of a definition with the first-use. Hence, we
limited ourselves to a conservative but precise implementation.

Information for fault database: The entries of the fault sites that
are pruned by this technique record the information of the fault
sites that represent them. In other words, the definition records the
identity of the first use (the program counter of the instruction and
the faulty unit id, as in figure 1).

2.2.2 Heuristics-based equivalence

Control-equivalence: This heuristic pruning technique uses the
observation that faults propagating through similar code sequences
are likely to behave similarly. It also uses the observation that a
majority of the faults appear in code sequences that are executed
many times. Consider a static instructionI with many dynamic in-
stances in the fault-free execution under consideration. The pruning
technique attempts to partition all these dynamic instances ofI into
equivalence classes, based on the control flow path followed after
the dynamic instance.

It is convenient to describe and implement the algorithm at
the basic block level. The technique uses the fault-free application
execution to enumerate all possible control flow paths up to a depth
n starting at the basic block that contains the instruction of interest.
Depth is defined as the number of branch or jump instructions
encountered. For the paths that were exercised multiple times in
the execution, it randomly selects one dynamic occurrence, a pilot.
It prunes all other unselected executions of such paths (population)
and assumes that faults in those dynamic executions are represented
by the selected ones (pilots). More precisely, a dynamic instruction
instance on a pilot path serves as a pilot for other instances with the
same PC on the other paths in its population.

Figure 2 explains through an example how this pruning tech-
nique selects pilots. The figure presents a control flow graph of a
small program, with the basic blocks represented by the black and
grey circles with numbers on their sides. Assume the grey basic
block is not exercised by the dynamic execution of interest. As-
sumen = 5 (depth until which control flow is tracked). Suppose we
are interested in finding the representative pilots for an instruction
in basic block 1. We enumerate all control flow paths starting at
basic block 1 up to a depth of 5 that are executed in the dynamic



1 

2 3 

4 5 

6 

7 

8 

Dynamically exercised paths up to depth 5  

��:���:���:���:���: 8 

��:���:���:�� 

��:���:���:�� :�2 :�5 

��:���:���:�� :�3 :�7 

��:���:���:���:���: 1 

Figure 2. Control-equivalence. The figure shows a CFG for a
small program starting at basic block 1 and ending at basic block
8. We enumerate all dynamically exercised control paths up to
a depth, say 5. Here basic block 4 (showed in grey) never gets
exercised. Therefore control flow paths through this node do not
appear on the list of dynamically exercised paths. The executions
along each of these paths form the equivalence classes for similar
fault outcomes.

fault-free execution of interest. Basic block 4 is never executed and
hence it does not appear in the list of dynamically exercised paths.
We identify each path as forming a new equivalence class. There
will be potentially many instances of such paths in the dynamic ex-
ecution trace. We randomly select one dynamic execution sequence
for each equivalence class and name it as the pilot for that class. As
mentioned before, a dynamic instruction instance on a pilot path
serves as a pilot for other instances with the same PC on the other
paths in its population.

We apply this technique to prune faults in all instructions other
than stores and those that affect stores within a basic block. This
is because the propagation of a fault in a store also depends on the
addresses of the loads in the control flow path taken (only loads
to the same address as the store will propagate the fault). The next
technique described deals with this distinction. Exceptions to the
above are a few SPARC specific instructions; namely,save, restore,
call, return, andread state register. In this study, we do not inject
faults in these instructions and therefore do not consider them any
further. We also do not inject faults in dead instructions and do not
consider those any further either.

Overall, control-equivalence has the potential of pruning a large
fraction of the faults by softening the constraint on evaluating all
dynamic occurrences from a specific code section.

Store-equivalence: A fault in a store instruction propagates through
the loads that read the faulty values. Load addresses are not entirely
captured by the control flow path taken after the store. We there-
fore developed an alternate heuristic, called store-equivalence, for
faults in store instructions or in instructions that a store depends
on within the same basic block. This heuristic captures the fault
propagation behavior by observing the addresses that a store writes
in a fault-free execution and recording all read accesses to this ad-
dress. It treats the faults in stores differently whenever a different
permutation of load instructions read the stored value.

Figure 3 illustrates our heuristic with an example. Consider
Store 1 and Store 2 as two dynamic store instruction instances from
the same static instruction. To determine if the faults in these two
store instructions will have the same outcomes, we examine all the
loads that return the values written by these stores in the fault-free
execution, i.e., Load 1a and Load 1b for Store 1 and Load 2a and
Load 2b for Store 2 from the figure. We first check whether the
number of such loads is the same (two for each store in the figure).

Store 1 

Memory      
A 

PC-L1a PC-L2b 

Store 2 

PC-L1a PC-L2b 

B 

Load 2b Load 2a 

Load 1a Load 1b 

Figure 3. Store-equivalence. Store 1 and Store 2 are two store
instructions from the same static instruction writing to addresses
A and B respectively. Load 1a with program counter PC-L1a and
Load 1b with program counter PC-L1b are two load instructions
reading the value from address A. Similarly, Load 2a and Load 2b
are two loads from address B with program counters PC-L2a and
PC-L2b respectively. The store-equivalence heuristic requires that
PC-L1a equal PC-L2a and PC-L1b equal PC-L2b.

If this is the case, then we check whether the static instructions
(program counters) of the corresponding loads are the same; e.g.,if
the program counters of Load L1a and Load L2a are the same and if
those of Load L1b and Load L2b are the same in the figure. If these
match, then we conclude that the two dynamic store instructions
are very likely to have similar fault outcomes and we place them
both in the same equivalence class.

Information for fault database: We record the information re-
garding the pilots in the fault database (figure 1). In particular, we
record the unique pilot id and the size of the population it repre-
sents. We can also record additional information such as the con-
trol path (sequence of instructions) this pilot represents for control-
equivalence or the usage pattern of the stored value (e.g., number of
loads and their program counters) for store-equivalence in the extra
information field. This information may be helpful for the applica-
tions of Relyzer (e.g., understanding and protecting SDC causing
fault sites).

2.3 Other pruning techniques

We considered several other pruning techniques, but they provided
limited benefit. We include them here for completeness.

Bounding branch targets (known-outcome category): Analo-
gous to the bounding addresses case (known-outcome pruning tech-
nique), a fault that causes a control instruction to jump to a location
that is not in the application instruction space is likely to result in
a detectable symptom (e.g., SWAT’s fatal trap and app-abort de-
tectors or an out-of-bounds detector analogous to that for data ad-
dresses can detect such faults).

The address range that contains all possible targets can be ob-
tained by noting the start and the end of the text section of an appli-
cation. Typically, the text section is small (for applications with un-
der million instructions; i.e., under 32 bits) and hence a large frac-
tion (over 50% on 64-bit machines) of faults in branch targets can
be predicted as detected and pruned by this technique. This bound-
ing technique may not be directly applicable to jumps to shared li-
braries because the registers used by these operations may already
contain addresses that are out of the text section.

We performed an optimistic experiment on the studied fault
models and applications and found that it only provides a prun-
ing of 0.5%. Hence, we do not include the bounding branch targets
technique in our study here. However, this technique may be ef-



fective for other faults models; e.g., faults in immediate operands.
Many branch instructions specify PC-relative displacements as im-
mediate operands, and could benefit from this technique.

Constant-based bit masking (known-outcome category): In
some logical operations, only a subset of the bit locations in the
source operands are used to produce the destination register value.
Hence, faults in the source operand’s bit locations that are usually
discarded will be masked. Currently we apply this technique only
on logical shift operations, where the shift count is a constant. We
prune faults in the source register’s bit locations that are not used
to produce the destination register value and treat them as masked.

This technique provides a modest benefit for the unoptimized
version of our applications. We, however, do not report it for the
optimized version of our applications because preliminary experi-
ments showed that it provides insignificant benefits.

Several other instruction-specific pruning techniques (similar to
the one above) have a potential of providing added pruning. This is
a part of our future work.

Constant-based equivalence (precise-equivalence category):
We applied the principal of constant propagation to prune faults
from operands of instructions that use constants. For such instruc-
tions, the effect of a fault in the source register (non-constant)
operand can often be studied directly in the destination operand;
therefore, we can prune faults from such source operands. In our
implementation, this pruning technique is currently limited to only
those logical operations where a single-bit fault in the source
operand propagates as a single-bit fault in the destination (e.g.,
logicalxor). This technique also provides negligible benefit for the
optimized applications. Hence we report it only for the unoptimized
applications.

Information for fault database: The first two techniques above
qualify as known-outcome based because they prune faults by
declaring them as detected or masked. Hence, similar to the bound-
ing addresses case, we record the range of the bits that are pruned
in the bit min and bit max field along with the estimated outcome
in the expected outcome field of the fault database (figure 1).

The third technique above is similar to def-use analysis. Conse-
quently, the fault database is updated with the information about the
fault equalization, i.e., the information of the destination operand
(program counter of the instruction and the faulty unit id in fig-
ure 1) is recorded at the source operand.

2.4 Implementation

Relyzer implements the pruning techniques using static and dy-
namic program analyses. For example, the def-use and known-
outcome pruning techniques are implemented largely as a static
program pass (they use some basic information from the dynamic
fault-free execution profile). Store- and control-equivalence tech-
niques, on the other hand, largely use the dynamic information.

As a first step, Relyzer initializes the fault database and com-
putes the initial set of faults. The information about the number
of dynamic instances of each static instruction is required to com-
pute the size of the initial set of faults and is obtained through a
dynamic profile of the application. Relyzer then applies the first
pruning technique – known-outcome address bounding, which is
implemented as a static program pass. This technique requires the
knowledge about the boundaries of stack and heap addresses ac-
cessed during the entire course of the program and this information
is obtained through dynamic profiling. Relyzer next performs the
def-use analysis (the precise equivalence based pruning technique),
which is also implemented as a static program pass. For applica-
tions with unoptimized codes, it also applies the two constant-based
pruning techniques at this step.

Once these static techniques are applied, Relyzer prepares the
application codes for dynamic analysis for the heuristics-based
equivalence pruning techniques (control- and store-equivalence).
It first labels all static instructions to indicate which (if any) of
the heuristics-based pruning techniques will be applicable to them.
For instructions within a given basic block, all stores and the in-
structions that any store is dependent on are labeled to be pruned
by store-equivalence. Since the dynamic store-equivalence based
analysis is performed only on store instructions, the identity of the
store instruction is recorded with the instructions that affect this
store (in other words, the instructions that any store depends on
also record the identity of the store instruction). Once the instruc-
tions for store-equivalence labeled, all other remaining instructions
(with the earlier mentioned exceptions) are marked to be pruned by
control-equivalence.

Relyzer then profiles the instructions and memory in more de-
tail to obtain dynamic control- and store-equivalence classes as dis-
cussed in Section 2.2. It next uses the store-equivalence classes (for
store instructions) and associates them with the instructions that
recorded the identity of these stores (as mentioned above) to ob-
tains the respective classes for all instructions that stores depend on.
As a last step, Relyzer computes the remaining number of pruned
faults by analyzing the updated fault database.

2.5 Computing SDC rates

Once all the pruning techniques are applied, the fault injection
experiments on the remaining fault locations are performed. The
SDC rate of the application can now be computed by using the
information stored in the fault database (figure 1) as follows.

We start by computing the SDC rate for a static instruction,
examining each faulty unit affecting the instruction. If a heuristics-
based equivalence technique is employed for the unit, then we
examine the outcomes of the instruction’s pilots for each bit of the
faulty unit not already pruned by the known-outcome techniques.2

For each pilot and faulty bit combination that produces an SDC,
we use the pilot’s total population to increment a count of the total
SDCs attributed to the faulty unit for this instruction.

For a faulty unit on which a precise-equivalence pruning tech-
nique is applied, we use the SDC count computed for the static
instruction and faulty unit combination that was determined to be
equivalent to the fault being examined (e.g., first use of a defini-
tion).

The total SDC count for a static instruction is the sum of the
SDC counts for all its faulty units as obtained above. The SDC
rate for a static instruction is its SDC count divided by the total
number of initial faults attributed to this instruction. The SDC rate
of an application is now simply the total SDC count of all the
static instructions divided by the total number of initial faults in
the application.

3. Methodology
3.1 Workloads

We implemented the pruning techniques described in Section 2
for single-threaded applications compiled for the SPARC V9 [26]
architecture, assuming the hardware fault models previously de-
scribed. We selected twelve applications – four each (randomly
selected) from the SPLASH-2 [27], PARSEC [3], and SPEC
CPU2006 [9] benchmark suites. Table 1 provides a brief descrip-
tion of these applications, including the inputs used, the dynamic
instruction count, and the number of faults prior to applying any

2 We assume the known-outcome techniques do not determine SDCs. The
SDC count from faults pruned by future such techniques can beeasily
incorporated.



pruning. We do not include the initialization and the output phases
of the applications in our study – these phases are usually domi-
nated by file reads and writes, memory allocation and deallocation,
etc. We found that the effectiveness of the developed pruning tech-
niques varies significantly depending on whether the applications
are optimized. We focus our results primarily on the optimized ver-
sions of the applications. Section 4.1, however, briefly summarizes
the impact of optimizations for a subset of the above applications.
The dynamic instruction counts and the number of faults in table 1
pertain to the optimized version of the applications.

3.2 Fault injection framework

As previously mentioned, the fault models we study are single
bit flips in architectural integer registers and in the output latches
of the address generation units (for loads and stores). Our fault
injection simulation infrastructure uses a full system simulation
environment comprising of Wind River Simics [24] and the GEMS
microarchitectural and memory timing simulator [15], running our
applications on the OpenSolaris operating system and compiled to
the SPARC V9 ISA. This framework is similar to that used in the
previous work on SWAT (e.g., [13]) with some modifications.

Our framework allows us to inject faults at any point in the ap-
plication execution. This is the chosen application fault site, as rep-
resented by a dynamic instruction in the fault-free execution. To
inject a fault, we start the application and execute it in functional
mode (Simics-only) up to 500 cycles before the chosen application
fault site. Then we start detailed timing simulation (Simics+GEMS)
and inject the fault when the application fault site is reached. Thus,
for address generation unit faults, we flip the specified bit in the
unit’s output latch when it generates the address for the specified
dynamic instruction. For integer register faults, we flip the specified
bit in the specified register when the specified dynamic instruction
reads the register (for a source) or writes the register (for a desti-
nation). The flipped bit retains its state until the latch or register is
overwritten. We then simulate the application for another 500 in-
structions in the detailed mode before switching to the functional
mode and running it to completion.

We check for all SWAT symptoms [21] (fatal traps, application
aborts, and kernel panics) in the detailed mode and a reduced set of
symptoms (fatal traps, kernel panics, and system error messages)
in the functional simulation phase. If a symptom is detected or
a timeout condition is met (the application executes more than
twice its expected runtime before producing the output), then we
terminate the simulation and the outcome is recorded as detected.
Otherwise, the output of the application is collected and compared
with the fault-free output. We record the outcome as masked or an
SDC depending on whether the two outputs are or are not the same
respectively.

Note that when we inject a fault, there is always an instruction
that consumes a faulty value or uses a faulty address. Thus, com-
pared to pure microarchitecture-level injection simulations, we see
no microarchitectural masking and very limited architectural mask-
ing. This is by design since we wish to maximize the injections that
might lead to SDCs.

3.3 Pruning techniques

The pruning techniques require both static and dynamic analyses of
the application. The static analyses study the binary and extract sev-
eral properties that are either directly applied towards fault pruning
or are later used by the dynamic technique. Since our fault injec-
tion infrastructure is developed for the SPARC V9 ISA model, we
restrict our study to SPARC V9 binaries. We could not find any
publicly available tools to analyze SPARC binaries, so we devel-
oped our own static binary analyzer that performs basic control

flow and data flow analyses.3 Using this static infrastructure, we
traverse the application and create the set of all transient fault sites.
We then apply the static pruning techniques, compute the pruned
fault set, and collect information for dynamic analyses. The dy-
namic analyzer profiles the branches, the memory access patterns
(for store-equivalence technique), instruction control flow patterns
(for control-equivalence technique), etc. We use Wind River Sim-
ics [24] to implement these dynamic profilers. Finally, we use the
information from both the static and dynamic analyses to generate
the final pruned fault set.

For store-equivalence pruning, we dynamically observe ev-
ery store instruction, the addresses they write to, and record all
loads that read the stored value (as explained in Section 2.2).
For mcf, however, we record only the first ten loads instead of
all loads for forming the store-equivalence classes such that our
store-equivalence algorithm finishes in a reasonable time of<10
hours.

To quantify the impact of the pruning techniques, we report
the percentage of total faults that are pruned (in total and by the
individual techniques) and the absolute number of remaining faults
(pilots) that must be simulated to determine the resiliency of an
application.

3.4 Validating pruning techniques

The control- and store-equivalence based fault pruning techniques
use heuristics and require validation. Each of these pruning tech-
niques chooses a dynamic instruction (pilot) to represent the out-
come of several other dynamic instructions (thepopulation). We
quantify the validity of these techniques by quantifying the extent
to which the pilots correctly represent the population. For exam-
ple, suppose the injection of a fault in a pilot results in masking the
fault. Suppose the injection of an analogous (hardware) fault in all
members of the population results in 98% of the outcomes being
masked and 2% detected or SDC. Then we say that the prediction
rate of the pilot is 98%. The overall prediction rate for the prun-
ing techniques is the weighted average of the prediction rate for
all the pilots for that technique, weighted by the fault populations
represented by the pilots.

To find the exact misprediction rate, ideally, we would run fault
injections for all the pilots and all their associated populations. Sim-
ulating this combination is clearly prohibitive in simulation time.
To reduce this time, we first restrict our validations only to the op-
timized applications. Further, for a given pilot, we randomly sam-
ple its population to determine the prediction rate. We select the
sample size such that the 99% confidence interval for prediction is
within 5% of the actual prediction rate.4 We then inject transient
faults in the pilot and the selected samples to obtain the prediction
rate. Ideally, we would inject faults in all bit locations in the appro-
priate faulty units for the pilot, but the simulation time would be
prohibitive. We instead injected faults in every 8th bit (bits 0, 8, 16,
24, 32, 40, 48, and 56 for a 64-bit register or the output latch of the
address generation unit) that was not already pruned by the known-
outcome pruning technique (e.g., if the known-outcome pruning
technique prunes higher-order 32 bits, then we inject faults only in
bits 0, 8, 16, and 24).

Sampling the population for a given pilot still leaves the prob-
lem that there are many pilots, each of which would require a

3 We use the dynamic branch profile to create a correctly connected control
flow graph because jump and link instructions create broken edges in the
graph that may not be completed through static information alone.
4 The pilot requires only one fault injection experiment to obtain the out-
come A. We can formulate the fault injection experiments for thepopula-
tion as a Bernoulli trial with outcomes being either A or not A.Assuming all
the experiments are independent, we can apply the principalsof confidence
intervals used for normal distributions.



Benchmark
Suite

Application Description Input Num. Dynamic
Instructions

Num. Faults

Parsec 2.1

Blackscholes
Calculates prices of options with
Black-Scholes partial differential

equation
sim-large 22.3 Million 1.9 Billion

Fluidanimate
Simulates an incompressible fluid
for interactive animation purposes sim-small 611.4 Million 102.5 Billion

Streamcluster
Solves the online clustering

problem sim-small 1.44 Billion 106 Billion

Swaptions
Computes prices of a portfolio of

swaptions using Monte Carlo
simulations

sim-small 922.2 Million 97.3 Billion

Splash-2

FFT 1D Fast Fourier Transform 64K points 548 Million 48.7 Billion

LU
Factors a matrix into the product of
a lower & upper triangular matrix

512× 512 matrix
16× 16 blocks

402.8 Million 33.2 Billion

Ocean
Simulates large-scale ocean

movements based on eddy and
boundary currents

258× 258 ocean 358 Million 21.7 Billion

Water
Evaluates forces and potentials that

occur over time in a system of
water molecules

512 molecules 504.3 Million 36.6 Billion

SPEC-Int
2006

Gcc
Based on gcc Version 3.2,
generates code for Opteron test 3.8 Billion 500.4 Billion

Libquantum
Simulates a quantum computer
running Shor’s polynomial time

factorization algorithm
test 235.4 Million 27.4 Billion

Mcf
Vehicle scheduling using a network

simplex algorithm test 4.57 Billion 485.4 Billion

Omnet++
Uses the OMNet++ discrete event
simulator to model a large ethernet

campus network
test 1.35 Billion 146 Billion

Table 1. Applications studied. The number of dynamic instructions and faults pertains to the optimized versions of the applications.

large number of simulations for validation. We therefore restricted
the number of pilots such that it was feasible to simulate all of
them (and their sampled populations) in the available time. We se-
lected enough pilots such that the total number of fault injections
we had to perform for validation (for pilots and the population)
was over one million for each of control- and store-equivalence
(1,378,000 for control and 1,093,000 for store) across all faultmod-
els. In particular, for validating control-equivalence, we performed
approximately 1,092,000 and 286,000 injections for integer regis-
ter and address generation unit fault models respectively. For store-
equivalence, he corresponding number of injections are 835,000
and 258,000. Further, each selected pilot represented a population
of at least 1,000. For the 99% confidence interval, our average val-
idation results for control-equivalence pruning have error bars of
1.84% and 3.67% for the integer register and address generation
unit fault models respectively. For store-equivalence pruning, the
corresponding error bars are 2.85% and 4.61%.

4. Results
4.1 Effectiveness of pruning techniques

4.1.1 Overall pruning effectiveness

Tables 2(a) and (b) show the overall effectiveness of Relyzer’s
pruning techniques by presenting the percentage of total faults
pruned for the optimized and unoptimized applications respec-
tively. The tables also show the absolute number of total faults and
the faults remaining after pruning. The applications are ordered ac-
cording to the total number of original faults.

For optimized applications, we find that Relyzer prunes an ag-
gregate of 99.78% of all the studied faults across all applications.
The total number of faults that need to be simulated reduces from
1.6 trillion to 3.52 billion, a three to five orders of magnitude re-
duction for all applications except mcf. The lowest pruning rate
for a single application was 99.43% (for mcf) while most applica-

tions saw a pruning rate of 99.99%. For mcf,5 two stores observed
a pruning of 20%, bringing down mcf’s overall pruning rate. The
number of remaining faults in these two stores and the instructions
that these stores depend on alone accounted for 83% of the total
remaining faults for mcf.

4.1.2 Pruning effectiveness of individual techniques

Figures 4(a) and (b) show the effectiveness of Relyzer’s individual
pruning techniques for the optimized and unoptimized applications
respectively. The stacks in each bar show the contributions of the
individual pruning techniques when applied in the order shown
(bottom to top) for all the faults in the application. There is no
stack for constant-based pruning techniques in part (a) because our
preliminary experiments showed these techniques provide limited
benefit for those applications.

Focusing on the optimized applications, we found that the
known-outcome pruning technique pruned an average of approx-
imately 27% of all the faults. Def-use analysis prunes 15% of all
the faults on average. Thus, the above mostly static techniques
alone provided approximately 42% of pruning across our applica-
tions. Control-equivalence is overall the most effective individual
technique for these applications, providing 48% of the pruning on
average. Finally, store-equivalence technique pruned about 10% of
all the faults.

The unoptimized applications show slightly different behavior.
First, store-equivalence provides notably more pruning than in the
optimized applications. A likely reason is that there are more mem-
ory operations in unoptimized codes since they use the stack heav-
ily and the registers poorly. Moreover, these store operations are
often represented by a small number of pilots because they ob-
serve few permutations of loads during store-equivalence prun-
ing. Second, the constant-based techniques provide significantly

5 For forming the store-equivalence classes for mcf, we accounted for the
first ten loads instead of all loads so that our algorithm finished in a
reasonable time of<10 hours.



Application Initial faults Total Remaining faults
(in billions) pruning (in millions)

Blackscholes 1.9 99.99% 0.07
Ocean 21.7 99.99% 2.9

Libquantum 27.4 99.98% 4.1
LU 33.2 99.99% 1.1

Water 36.6 99.99% 2.1
FFT 48.7 99.99% 0.3

Swaptions 97.3 99.99% 0.6
Fluidanimate 102.5 99.91% 92
Streamcluster 106 99.99% 8.6

Omnet++ 146 99.99% 2.2
Mcf 485.4 99.43% 2,781
Gcc 500.4 99.88% 627.5

(a) Optimized applications.

Application Initial faults Total Remaining faults
(in billions) pruning (in millions)

Blackscholes 4.01 99.99% 0.03
FFT 61.18 99.99% 0.16

Libquantum 127.03 99.93% 3.40
LU 175.36 99.99% 0.80

Swaptions 318.66 99.99% 0.08

(b) Unoptimized applications.

Table 2. Effectiveness of Relyzer’s pruning on (a) optimized and
(b) unoptimized applications. The applications are in increasing
order of total number of original faults.

more pruning for the unoptimized applications (about 6.5% of total
faults). We observed that the number of remaining faults increases
significantly (by about 100%) when this technique was excluded
for the unoptimized applications. However, it had negligible im-
pact on optimized applications. Overall, figure 4 shows significant
differences in the relative effectiveness of the pruning techniques
between the optimized and unoptimized codes, showing that com-
piler optimizations do impact the behavior of fault propagation.

4.1.3 Trading off simulation time with coverage

Although Relyzer is able to prune faults effectively, there are still
a relatively large number of remaining faults that need to be simu-
lated, especially for the longer applications. Relyzer allows a sys-
tematic method to trade off simulation time with coverage, reveal-
ing sweet spots that dramatically reduce simulation time with mod-
est reduction in coverage.

Figure 5 shows the percentage of pilots (y-axis) needed to pro-
vide a desired coverage of the faults across the entire application
(x-axis) after applying all pruning techniques for the optimized ap-
plications. These pruning techniques include the known-outcome
class, which is considered to be always covered. For readability,
we plot only the individual applications that had more than 1 mil-
lion remaining faults that need simulation. For the full picture, we
also plot the data for the total number of faults.

It is evident from the figure that only a small fraction of the
pilots cover most of the faults. For example, 99% of all the faults
across all the studied applications can be covered by 1.81% of the
pilots. This corresponds to approximately 32 million faults. We can
reduce this set further by compromising on the bit locations; e.g.,
injecting a fault in only every eighth bit of a given dynamic instruc-
tion, as in our validation experiments. With our existing simulation
speeds, this set of faults can be simulated in approximately 11 days
on a cluster of 200 cores.
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Figure 5. The percentage of pilots (y-axis) required to provide a
desired amount of fault coverage (x-axis) for optimized applica-
tions. The x-axis shows the percentage of the total initial number
of faults that are covered by the corresponding percentage of pilots.
This includes the faults from the known-outcome category which
are always considered covered. Note that the scale on the x-axis is
not linear. Only individual applications that have more than 1 mil-
lion remaining (not pruned) faults are shown, along with a curve
for the aggregate faults across all applications.

We observed similar results for unoptimized codes as well,
but do not present them here because most of the unoptimized
applications we studied have under 1 million remaining faults.

4.2 Validation of heuristics-based pruning techniques

4.2.1 Prediction rate for control- and store-equivalence

We validated the heuristics-based pruning techniques, namely
control- and store-equivalence, for the optimized applications as
described in Section 3.4. Figure 6 shows the prediction rate of the
pilots for all twelve applications and both the studied hardware fault
models (integer register orreg and output latch of address gener-
ation unit oragen). The combined bar for each application shows
the observed prediction rate across all studied fault models after ap-
plying all pruning techniques. For each application, the combined
bar is the average of the prediction rate of each pruning technique
and fault model combination, weighted by the fraction of faults
pruned by that combination. Specifically, in addition to account-
ing for control- and store-equivalence, this bar also accounts for
faults pruned by def-use pruning (by associating a def-use pruned
fault’s prediction rate with that of its representative faults’ rate). It
also accounts for known-outcome based pruning, assuming a 100%
prediction rate for that technique.

Figure 6 shows that the pilots selected through control-equivalence
predict the outcome of their populations with an average (across all
applications) accuracy of 95.7% for reg faults and 94.5% for agen
faults. The pilots selected by store-equivalence predict their popu-
lation’s outcomes with an average accuracy of 95.4% for reg faults
and 92.6% for agen faults. The figure also shows that for each in-
dividual application, Relyzer predicts the outcome across all fault
models and pruning techniques with an accuracy of>91% (shown
by thecombined bar). This prediction rate averaged across all ap-
plications is 96%.

Integer register faults observe a prediction accuracy of approx-
imately 90% or higher for all applications except Ocean. On the
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Figure 4. Effectiveness of the individual pruning techniques for (a) optimized and (b) unoptimized applications.
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Figure 6. Validation of control- and store- equivalence for integer register (reg)and output latch of address generation unit (agen) faults for
optimized applications. Thecombined bars for each application show the prediction rate across all fault modelsand pruning techniques.

other hand, agen faults showed<90% (the lowest is about 82%)
for some cases for five applications – Blackscholes, Ocean, Gcc,
Mcf, and Omnet++. We examined a few of these cases to under-
stand why the prediction rate was not higher, and believe many of
these can be eliminated by refining our heuristics.

For example, for Omnet++, a notable contributor to the mispre-
dictions with control-equivalence for agen faults was a load instruc-
tion that should have been labeled for store-equivalence pruning.
The instruction directly affected a store (and nothing else), but in
the next basic block. Since our analysis looks only within the basic
block for such data dependences to select instructions for store-
equivalence pruning, it could not find this dependency. We plan to
extend our static techniques in the future to enable correct labels in
such cases.

As another example, we examined Blackscholes for store-
equivalence pruning for agen faults. The major contributor to the

misprediction rate was a load instruction loading values from faulty
addresses. In several cases, it so happened that the faulty and cor-
rect address had the same value; therefore, the fault was masked
rightaway. On the other hand, sometimes this was not the case, and
the fault led to an SDC. A common pilot represented both classes
of cases, leading to mispredictions. The fundamental issue is that
our heuristics do not examine the faulty value. For Blackscholes,
we could easily modify our implementation so that during our pro-
filing step (fault-free execution), for every potential fault in a load
address, we check the faulty address to determine if the value is
different. This leads to a known-outcome based technique that can
immediately determine if such a fault would be masked.

Examining the mispredicted cases in Ocean for agen faults
pruned by store-equivalence exposed a more difficult limitation of
Relyzer. A store instruction with a faulty address was one of the
major sources of the high misprediction rate in Ocean. Such a store



corrupts the intended address by not writing the value from the
source register and also the faulty address by writing an unintended
value. We found the root cause of the misprediction to be the
writing of the source register value in the faulty address. Since
Relyzer cannot examine fault propagation through faulty addresses,
this becomes a fundamental limitation and overcoming it is an
interesting future direction.

4.2.2 SDC vs. non-SDC prediction rate

A key application of Relyzer is identifying SDC causing fault sites;
therefore, we would like to ensure that Relyzer’s prediction rate for
SDC causing faults is also high. The data in figure 6 showed the
prediction accuracy for masked and detected faults as well. Here,
we distinguish only between SDC and non-SDC outcomes, treating
the masked and detected outcomes the same. With just the SDC
and non-SDC categories in mind, we revisited the validation results
in figure 6. We observed that the average (across all applications)
prediction rate for control-equivalence for reg and agen faults is
96.6% and 96.2% respectively, slightly higher than the overall
prediction rate which also distinguished between the two non-
SDC outcomes. Similarly, the average prediction rate for store-
equivalence for reg and agen faults is also a higher 95.9% and
94.9% respectively.

4.2.3 Outcomes for fault injections in pilots

We next show that our choice of pilots is not biased towards any
specific fault outcome. We plotted the outcomes from the fault
injection experiments of the pilots that were selected for validation
(described in Section 3.4). Figure 7 shows the distribution of the
outcomes for reg faults in part (a) and agen faults in part (b). These
two figures represent just 3,298 fault injection experiments. Each
bar in figure 7 has between 129 and 320 injections for part (a)
and between 27 and 102 for part (b). Even with such small sample
sizes, the fault outcomes have a significant fraction of SDCs. In
aggregate, about 23% of the pilots result in SDCs for both reg and
agen faults. This result indicates that Relyzer can be effective in
finding SDC causing fault sites.

4.2.4 Need for multiple pilots per static instruction

Our control- and store-equivalence heuristics partition the dynamic
instances of a static instruction into multiple equivalence classes.
Here we provide evidence for the need for such partitioning. In
other words, we show that a naive algorithm that chooses just one
pilot for each static instruction may be insufficient. Figure 8 shows
the fraction of static instructions that are represented by different
numbers of pilots. It shows that across all applications, at least 47%
of the static instructions that are marked to be pruned by either
store- or control-equivalence are represented by at least two pilots.

To provide further evidence for the need for such categoriza-
tion, we examined one of the static instructions in LU that had
multiple pilots representing it (12 in this case). We found that 8
of them resulted in SDCs (together representing 70% of the dy-
namic instances of that instruction) and 4 in Masking (all these pi-
lots showed very high prediction rates).

5. Related Work
There has been much work in the area of symptom-based fault
detection that uses inexpensive monitors for anomalous software
behavior to detect hardware faults [5, 7, 13, 14, 16, 19, 20, 25].
Much of this work is evaluated using fault injection campaigns on
architecture-, microarchitecture-, or gate-level simulators or FPGA
emulators running various benchmark applications. The hardware
and software locations are typically randomly selected to achieve
some statistical confidence. To our knowledge, these sampling
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Figure 8. Pilots per static instruction. The figure shows the frac-
tion of static instructions (averaged across all the optimized ap-
plications, pruned either by store- or control-equivalence) that are
represented by a specified number of pilots. For example, 15% of
the static instructions that are pruned by store-equivalence are rep-
resented by 2 pilots.

mechanisms, particularly for application injection sites, have not
been validated. Further, the fault injection results do not provide
any insight on the parts of the application that remain vulnerable
to SDCs (other than for the relatively few application sites where
faults were actually injected and simulated). Relyzer selects sam-
ple application injection points derived from static and dynamic
properties of the program. Each sample identifies a population of
fault injection sites that are expected to have the same behavior,
and all the populations together represent the entire execution. Fur-
ther, Relyzer also exposes the execution trace responsible for an
SDC so that alternate, customizable protection mechanisms can be
designed.

Although we are not aware of other techniques that provideall
of the above benefits of Relyzer, there are several studies that have
related goals and, in some cases, are complementary to Relyzer.

SimPLFIED [18] shares Relyzer’s high-level goal of finding all
faults that escape detection and lead to SDCs. It uses a powerful
symbolic execution method to abstract the state of erroneous val-
ues in the program. It injects such a symbolic error at all possible
application sites (one at a time) and uses model checking with the
abstract execution technique to explore all possible paths with the
symbolic error and determines the outcomes of such paths (mask-
ing, detection, or SDC). The focus of SimPLFIED is to reduce the
number of fault values per application site that need to be injected
(hence the symbolic fault), which is orthogonal to our work. Our
focus is to reduce the number of application sites where the fault
is injected (we restrict the values by simply restricting our hard-
ware fault models since that is not the focus of our work). It would
be interesting to combine SimPLFIED with Relyzer. However, it is
unclear if the model checking techniques used in SimPLFIED can
scale to large applications; so far, it has been applied to only a few
small benchmarks (e.g., a Siemens benchmark).

Shoestring [6] is a purely static technique that shares our goal
of finding application sites where a fault may escape detection us-
ing symptom-based detectors. Shoestring provides a static analy-
sis that identifies static instructions where faults are likely to be
detected quickly enough; e.g., there is a short-enough path in the
dataflow graph from such a fault to enough potentially symptom-
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Figure 7. Breakdown of outcomes obtained from fault injections in the sampled pilots.

generating instructions. The rest of the faults are considered vulner-
able and the important ones among these (currently, stores) are pro-
tected by duplicating any instructions that produce data that feeds
into them. Shoestring succeeds in its goal of reducing the SDC rate
by about 34% to 1.6%. However, this improvement comes at the
cost of 15.8% performance overhead, which is prohibitive for the
systems we target. One shortcoming of Shoestring is that it only
employs static analysis to identify vulnerable instructions. Relyzer,
on the contrary, applies a set of dynamic analyses that can distin-
guish between different instances of a static instruction and also
exploit information known only at execution time (e.g., store and
load addresses). It uses a combination of static and dynamic anal-
yses to bin application fault locations into equivalence classes and
then performs accurate fault simulation of the representative fault to
identify the outcome. This allows Relyzer to account for masking
of a fault, quantify a program’s SDC rate, and enumerate the dy-
namic conditions that make code sections SDC prone. Shoestring’s
static analysis cannot achieve any of these. It would be interesting
to combine the analyses of Shoestring and Relyzer in future work.

Benso et al. [2] proposed a solution that performs runtime anal-
ysis of the application variables to obtain the criticality behavior of
every variable. That work developed an analytical model for this
purpose that considers three variables – lifetime of the application
variable, number of reads to it, and whether it is a pointer or not.
The work proposes that the contribution of each of these variables is
application independent and once the parameters of the model are
set they remain fixed for all other applications. The results show
that this solution observes low inaccuracies in predicting the criti-
cality of variables. However, the results were shown on small ap-
plications with few variables. Relyzer, on the other hand, captures
the fault propagation behavior from the fault-free execution of the
application and uses it to categorize faults into different equiva-
lence classes. It, however, relies on fault injection experiments on
the pilots to estimate the outcome of the population (as opposed
to estimating the outcomes based on static application-independent
parameters).

Sridharan et al. [23] quantify the reliability behavior of an ap-
plication using a metric called Program Vulnerability Factor (PVF).
PVF is a microarchitecture-independent method to quantify archi-
tectural fault masking inherent to a program. PVF focuses on iden-
tifying only those faults that are masked by the application. It does
not attempt to distinguish faults that lead to SDCs from the ones

that result in detection, but this distinction becomes crucial with
symptom-based detection in place. Hence, Relyzer focuses on dis-
tinguishing SDCs from detections. It is unclear whether PVF can
make this distinction.

6. Conclusions and Future Work
Hardware reliability has become a major challenge, requiring low-
cost and effective fault detection mechanisms. This paper concerns
a promising approach, namely symptom-based detection, where
low-cost monitors are deployed to monitor for anomalous software
behavior as symptoms of hardware faults. There has been much
recent work on such techniques, showing they provide high fault
coverage at very low cost. However, for some cases, the SDC rate
is still non-negligible, the evaluation techniques typically based
on randomly selected fault injection campaigns are not validated,
and the random injections do not provide insight on the vulnerable
portions in the rest of the application that might need protection.

This paper presents Relyzer, a technique to systematically ana-
lyze all fault injection sites in an application for transient faults.
Relyzer seeks to identify all SDC causing instruction instances,
both to enable quantifying the application’s true SDC vulnerabil-
ity and to motivate low-cost application-specific protection mecha-
nisms for the desired SDC-vulnerable cases.

Relyzer employs a set of novel fault pruning techniques that dra-
matically reduce the number of faults (application sites) that require
thorough fault simulations. Relyzer predicts the outcome of sev-
eral faults, eliminating the need for thorough fault injection experi-
ments for them. It then exploits the fact that several application fault
sites are impacted in a similar way by certain hardware faults, and
develops heuristics to identify such application-level fault equiva-
lence. Relyzer employs a series of static and dynamic techniques
to categorize equivalence classes of faults, such that only one pi-
lot fault from an equivalence class needs to be thoroughly studied
through fault injection experiments. Through these techniques, we
show that Relyzer prunes the set of faults by 99.78% across the
twelve studied applications.

We also validated the heuristics-based fault pruning techniques
by matching the results from fault simulations for the pilots with
results from fault simulations with samples of the represented fault
populations. Each pruning technique and fault model combination
individually gave an accuracy of>92%, averaged across all studied



applications. Aggregating all the pruning techniques (heuristics-
and analysis-based) and faults, Relyzer correctly determined the
outcomes of 96% of the faults, averaged across all applications.
Overall, Relyzer significantly reduced the application-level fault
sites that require time-consuming simulations, making it feasible
to study a complete application through a relatively small number
of fault injection experiments.

For our future work, we plan to perform a sensitivity analysis
of the control- and store-equivalence based techniques on the pa-
rameters such as the depth of the control flow (used to identify
the control-equivalence classes) and limiting the number of tracked
loads (used for finding store-equivalence classes). Our current so-
lution prunes faults in instructions that affect a store through store-
equivalence. However, the outcome of this fault may also be de-
pendent on the control sequence of the instructions that produce
the store value and accounting for this information may further im-
prove the prediction rate. Hence it will be interesting to combine
both control- and store-equivalence based pruning techniques into
a unified technique. For microarchitectural fault models, applying
value perturbation based refinement to the existing pruning tech-
niques is an attractive future work because it can potentially im-
prove the existing prediction rate (especially for Blackscholes).

In the future, we also plan to extend our study to more fault
models, which might involve the development of new pruning
techniques. It will be interesting to understand how this approach
can be applied to permanent faults. Relyzer has been concerned, so
far, about the accurate evaluation of the fault outcomes. However,
evaluating the fault detection latency with high accuracy is also
important. We plan to extend Relyzer in this direction as well.
Since a thorough evaluation of a fault through fault simulation
is expensive in time, Relyzer focused on reducing the number of
fault sites requiring thorough fault injection experiments. However,
techniques that directly reduce the time for each fault injection
experiment are in need as well. We plan to incorporate in Relyzer
an analysis that can significantly reduce the time for each fault
simulation as well.

Utilizing Relyzer for evaluating an application’s resiliency and
identifying the SDC causing fault sites is one of our core future
directions. In this work, we also plan to exploit Relyzer’s ability to
provide added information about the fault site and the path to the
SDC in understanding the characteristics of SDC causing fault sites
and developing low-cost detectors for them.
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