Appears in Proceedings of the 15" International Symposium on High-Performance Computer Architecture, February, 2009.

Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults *

Man-Lap Li, Pradeep Ramachandran, Ulya R. Karpuzcu, Siva Kumar Sastry Hari, Sarita V. Adve
Department of Computer Science
University of Illinois at Urbana-Champaign
swat@cs.uiuc.edu

Abstract

Decreasing hardware reliability is expected to impede the
exploitation of increasing integration projected by Moore’s
Law. There is much ongoing research on efficient fault toler-
ance mechanisms across all levels of the system stack, from
the device level to the system level. High-level fault tolerance
solutions, such as at the microarchitecture and system levels,
are commonly evaluated using statistical fault injections with
microarchitecture-level fault models. Since hardware faults
actually manifest at a much lower level, it is unclear if such
high level fault models are acceptably accurate. On the other
hand, lower level models, such as at the gate level, may be
more accurate, but their increased simulation times make it
hard to track the system-level propagation of faults. Thus, an
evaluation of high-level reliability solutions entails the clas-
sical tradeoff between speed and accuracy. This paper seeks
to quantify and alleviate this tradeoff.

We make the following contributions: (1) We introduce
SWAT-Sim, a novel fault injection infrastructure that uses
hierarchical simulation to study the system-level manifes-
tations of permanent (and transient) gate-level faults. For
our experiments, SWAT-Sim incurs a small average perfor-
mance overhead of under 3x, for the components we sim-
ulate, when compared to pure microarchitectural simula-
tions. (2) We study system-level manifestations of faults in-
Jected under different microarchitecture-level and gate-level
fault models and identify the reasons for the inability of
microarchitecture-level faults to model gate-level faults in
general. (3) Based on our analysis, we derive two probabilis-
tic microarchitecture-level fault models to mimic gate-level
stuck-at and delay faults. Our results show that these models
are, in general, inaccurate as they do not capture the complex
manifestation of gate-level faults. The inaccuracies in exist-
ing models and the lack of more accurate microarchitecture-
level models motivate using infrastructures similar to SWAT-
Sim to faithfully model the microarchitecture-level effects of
gate-level faults.

*This work is supported in part by the Gigascale Systems Research Cen-
ter (funded under FCRP, an SRC program), the National Science Founda-
tion under Grants CCF 05-41383, CCF 08-11693, and CNS 07-20743, an
OpenSPARC Center of Excellence at the University of Illinois at Urbana-
Champaign supported by Sun Microsystems, and an equipment donation
from AMD.

1 Introduction

While technology scaling facilitates extended system in-
tegration, the scaled transistors are increasingly prone to fail-
ures for reasons such as infant mortality, wear-out, varia-
tion, etc., making them less reliable. The hardware reliability
problem has, in the past, concerned only high-end niche sys-
tems where solutions that involve heavy amounts of redun-
dancy in terms of space, time, or information are acceptable.
In the future, however, the reliability problem is expected to
pervade even the mainstream computing market where tradi-
tional solutions are too expensive to be applied.

To counter this reliability threat, researchers have pro-
posed solutions at all levels of design, from the system level
all the way down to the circuit and the device level. Exam-
ples include software-level symptom-based detection tech-
niques such as SWAT that capture how hardware faults man-
ifest to the system level [12, 22], end-to-end error detection
and correction [23], microarchitecture-level (uarch-level) re-
dundancy [27], and circuit-level BIST techniques [6].

To evaluate the efficacy of these solutions, it is essential to
capture the expected behavior of the fault at the level at which
the solution is implemented. For example, the manifestation
of a gate-level floating-point (FP) unit fault needs to be accu-
rately captured at the microarchitecture level to evaluate the
efficacy of a proposed microarchitecture-level floating-point
unit checker. This paper concerns accurate models of hard-
ware faults at the microarchitecture level to evaluate fault-
tolerant solutions at the microarchitecture and higher levels.

Recently, several parch-level solutions that tolerate hard-
ware failures have been proposed [2, 8, 12, 14, 25, 30].
The primary evaluation mode for these proposals has been
through statistical fault injections in simulations either at
the gate level [8, 14, 25] or the microarchitectural state el-
ements (e.g., output latch of an ALU) [2, 12, 30]. While
gate-level fault injections can accurately capture lower level
faults, the long simulation time of these schemes prevents
detailed evaluation of the propagation of gate-level faults
through the hardware and into the software. On the other
hand, the parch-level injections are fast and allow observ-
ing faults propagated to the software level. However, while
latch-level injections may be appropriate for array elements
within the processor, it is unclear whether modeling faults in
combinational logic at the latch level (e.g., injecting a fault

at the output latch of the FP unit to represent a fault in the
logic), is accurate. While alternative FPGA-based emula-
tions [11, 17, 21] offer higher speed and model gate-level
faults with high fidelity, the limited observability and con-
trollability gives less flexibility than software simulations.
Hence, this paper focuses on software simulation methods.

The lack of speed in the gate-level fault simulation
paradigm and the possible lack of fault modeling fidelity
in parch-level fault simulation prompt searching for a so-
lution that can achieve the best of both worlds. To address
this classic tradeoff between speed and accuracy, past work
has applied the paradigm of hierarchical simulation, where
different parts of the system are simulated at different ab-
straction levels so that required details are modeled only in
the parts of interest, thus incurring reasonable performance
overheads [1, 5, 7, 10, 15, 18].

In the context of fault tolerance, hierarchical simulations
have been used to study transient faults in the processor by
using a hierarchy of RTL and lower-level simulators [7, 15].
Since these simulators were used to study transients, they in-
voke the lower-level simulator just once to capture the effect
of the fault, following which simulation happens only in the
higher level. Other work has used hierarchical simulations
to generate fault dictionaries that capture the manifestations
from the lower level “off-line” and use them to propagate
fault effects during high-level simulations [10]. This idea of
fault dictionaries has also been used to study gate-level stuck-
at faults in small structures, such as an adder [5]. However,
fault dictionaries are specific to the fault model for which
they are generated and cannot be used to simulate arbitrary
fault models (the dictionary will have to be generated off-line
for every such fault model); timing faults particularly present
a challenge. Further, for faults in arbitrarily large structures,
the growing sizes of inputs and faults make the dictionaries
intractable, making them hard to use.

Our focus here is on the increasingly important perma-
nent and intermittent faults [4, 31] and solutions for model-
ing them at the microarchitecture level or higher. In partic-
ular, successful solutions must address the following three
critical aspects of fault simulation that prior work does not
address in unison.

1. Simulation must be fast enough to capture how software
would be affected by hardware faults.

2. Unlike transients, where the fault effect can be captured
once and propagated to the higher abstraction level, per-
manent and intermittent faults have the characteristic
that one activation of a fault could corrupt the soft-
ware execution, which influences future activations of
the same fault. This feedback mechanism between the
hardware fault and the software must be faithfully sim-
ulated.

3. The simulator must be flexible enough to model differ-
ent types of faults.

1.1 SWAT-Sim

To meet the stated criteria, we propose a novel
fault injection infrastructure, SWAT-Sim, that couples a
microarchitecture-level simulator with a gate-level simulator
and has the following properties.

1. To achieve speed close to a microarchitectural simula-
tor and minimize overhead, SWAT-Sim only simulates
the component of interest (in our case, the faulty com-
ponent) at gate-level accuracy and invokes a gate-level
simulation of the component on-demand.

2. To accurately capture the interaction between the hard-
ware fault and the software, SWAT-Sim invokes the
gate-level simulation repeatedly during runtime (inter-
spersed with parch-level simulations); thus, if the soft-
ware activates the gate-level fault, it would be corrupted
and affects future activations of the same fault.

3. To allow fault modeling flexibility, SWAT-Sim employs
a gate-level timing simulator where different timing
faults can be modeled by changing the delay informa-
tion within the faulty module.

These design choices of SWAT-Sim allow studying of the
impact of gate-level permanent faults on software at speeds
comparable to parch-level simulators. Further, since the fault
simulation is performed while real-world software is execut-
ing, the effect of the fault is studied using functional vectors
that represent realistic scenarios. SWAT-Sim thus has an ad-
vantage over other methods that use artificially generated test
vectors (e.g., functional vectors collected from a fault-free
execution) to study the fault effect, as test vectors may not be
representative of real-world faulty behavior.

1.2 Contributions

o We present SWAT-Sim, a novel fault injection infras-
tructure for studying system-level effects of gate-level
permanent faults. To the best of our knowledge, SWAT-
Sim is the first simulator that facilitates detailed under-
standing of permanent fault propagation from the gate
level, through the microarchitecture, to the full system
level, with real-world applications running on an oper-
ating system. SWAT-Sim is both fast (compared to gate-
level simulators) and accurate (compared to parch-level
simulators), with a small average overhead of 3x, for the
components we simulate, over parch-level simulators.

e With SWAT-Sim, we study the system-level manifes-
tations of faults injected in a Decoder, an Arithmetic
and Logic Unit (ALU), and an Address Generation
Unit (AGEN) of a superscalar processor. We inject
faults under parch-level stuck-at, gate-level stuck-at,
and gate-level delay fault models, and use the previ-
ously studied SWAT detection techniques to understand
their system-level manifestation [12]. We show that, in

general, parch-level stuck-at faults do not result in sim-
ilar system-level fault manifestation as gate-level stuck-
at or delay faults. We thus infer that more accurate mod-
els are needed to model gate-level faults at the parch
level.

e Based on an extensive analysis of the propagation of
gate-level faults to the microarchitecture, we derive two
probabilistic fault models, the P-model and the PD-
model, for gate-level stuck-at and delay faults. Our
analysis suggests that these models are, in general, inac-
curate parch-level models for gate-level faults because
they fail to capture the complex manifestation of gate-
level faults. However, we identify several reasons of the
inaccuracies of the models that could aid deriving better
parch-level models in the future.

Overall, this paper makes a first attempt towards under-
standing the differences in system-level effects between the
parch-level stuck-at fault models and gate-level stuck-at and
delay fault models. Our extensive analysis and modeling
showed that it is highly complex to capture the several factors
that should be used for deriving prarch models that accurately
represent the behavior of gate-level faults. Therefore, un-
til there are further breakthroughs in parch-level fault mod-
els, we believe that gate-level simulations are necessary to
capture the behavior of gate-level faults. Hence, fast simu-
lation methods, such as the proposed hierarchical simulator,
SWAT-Sim, are essential for studying system-level effects of
hardware faults.

2 The SWAT-Sim Infrastructure

SWAT-Sim is fundamentally a parch-level simulator that
only simulates the faulty parch-level blocks, such as a faulty
ALU or decoder, at the gate level. This greatly minimizes the
gate-level simulation overhead.

2.1 Interfacing the Simulators

SWAT-Sim couples a full-system parch-level and a gate-
level simulator. A gate-level Verilog module of the faulty
unit is simulated only when the unit is utilized by the parch-
level simulator. The inputs to the parch-level unit are passed
as stimuli to the gate-level simulator. When the gate-level
simulation completes, the results are passed back to the
parch-level simulator, which then continues execution.

This communication between the two simulators is
achieved using UNIX named pipes. In the parch-level sim-
ulation, each time an instruction utilizing the faulty unit is
encountered, the stimuli needed by the gate-level module are
written to a dedicated stimuli pipe. After the gate-level simu-
lation completes, the computed data is written to a dedicated
response pipe from where the parch-level simulator can read
the response.

While the parch-level simulator can access the named
pipes like files, the gate-level simulator is enhanced with two
system tasks, implemented using the Verilog Procedural In-
terface (VPI) [9], that handle accesses to/from the pipes: One

collects signals from the stimuli pipe and the other writes the
results to the response pipe. The stimuli and response (argu-
ments of the two tasks) are tailored to the parch-level struc-
tures under fault injection.

Figure 1 compares how a single fault in a parch-level
structure X is simulated in a purely parch-level simulator
(Figure 1(a)) and in SWAT-Sim (Figure 1(b)).

In Figure 1(a), a single fault in X is modeled as a single-
bit corruption at the output latch of X because the parch-level
simulator lacks the gate-level details of X.

On the other hand, at the gate-level, a single fault in X
is modeled as a fault in a specific gate or net. Figure 1(b)
shows the steps of how the SWAT-Sim hierarchical simula-
tor simulates the effect of this fault. (1) An instruction in
the parch-level simulator uses X. SWAT-Sim collects the rel-
evant input vectors and sends them to the stimuli pipe. (2)
The Verilog system task reads from the input pipe and sends
the stimuli to the gate-level simulator. (3) The gate-level sim-
ulator feeds the stimuli to the faulty module and obtains the
output after gate-level simulation. (4) The Verilog system
task transfers the result from the gate-level simulator to the
response pipe. (5) The parch-level simulator reads the result
from the response pipe and continues simulation. In partic-
ular, the figure shows the effect of a single gate-level fault
propagating into a multiple-bit corruption at the output latch.
In contrast, the fault injected in pure parch-level simulation
only results in a single-bit corruption (Figure 1(a)).

2.2 Different parch-level Structures

Given the wide variety of structures within a modern pro-
cessor and the differences in the abstraction levels between
a typical parch-level simulator and its corresponding gate-
level counterpart, several factors should be considered when
performing such hierarchical simulations.
Simulating sequential logic: Simulating combinational
logic with single- or multi-cycle latency in SWAT-Sim is
straightforward. As long as the outputs are read after the
stipulated latency, the outputs are guaranteed to be correct
for each invocation. Sequential logic, however, requires state
to be maintained across invocations. In SWAT-Sim, since the
gate-level simulator is invoked (and thus clocked) only when
the unit is utilized, state is maintained across multiple invoca-
tions, resulting in accurate simulation of sequential circuits.
Handling gate-level signals that are not modeled at the
parch level: In some cases, due to abstract modeling in the
parch simulators, not all signals modeled at the gate-level
appear at the parch level. If the faulty component contains
such signals, the parch-level simulator can be enhanced with
those signals to help propagate faults in these paths, improv-
ing its accuracy. Even in the absence of these enhancements,
SWAT-Sim would present a more accurate fault model than
existing parch-level fault models.
Simulating large parch-level components that may result
in large overheads: Since the primary aim of SWAT-Sim
is being able to study the propagation of gate-level faults to
the system level, simulations must be carried out at reason-
able speeds. The components we study in the paper present

Instruction

Instruction

Stimuli
Inputs Inputs o [2)
2 Input
EEENEEEE EEEEEEEE R E—
1l / Pipe |system
- Task
Faulty Unit Faulty Unit *
X X
OutEut i Output e output | @ ©outputs
Fault Pipe Ve
M Injected System Fault
Continue Execution Continue Execution Task propagated

(a) parch-Level Fault Simulation

(b) SWAT-Sim Fault Simulation

Figure 1. Comparison of how a faulty parch-level unit X is simulated by (a) a pure parch-level simulator and (b) by SWAT-Sim.

overheads in simulation time of under 3x (discussed in Sec-
tion 4.1), when compared to pure parch-level simulations.
However, if the overhead becomes exorbitant because the
faulty module is too large, the module can be further par-
titioned so that only the faulty submodule is simulated at the
gate level while the rest is simulated at the higher level. For
example, [15] uses such an approach in a lower-level hierar-
chical simulator.

Overall, by effectively coupling the gate-level and parch-
level simulators, SWAT-Sim is capable of simulating gate-
level faults in different parch-level components, making it
a useful tool for full-system fault propagation studies with
gate-level accuracy.

3 Experimental Methodology

3.1 Simulation Infrastructure

Since permanent faults are persistent and can propagate
through the piarch-level to affect the OS and application state,
SWAT-Sim requires a full-system, a parch-level, and a gate-
level timing simulator. Any set of such simulators may be
interfaced for the purposes of fault propagation.

In our implementation, SWAT-Sim consists of three com-
ponents — the Virtutech Simics full-system functional simula-
tor [29], the Wisconsin GEMS processor and memory parch-
level timing models [13], and the Cadence NC-Verilog gate-
level simulator. We interfaced the Cadence NC-Verilog sim-
ulator with GEMS using system calls implemented in VPI as
described in Section 2.1

For the gate-level modules, we obtained the RTL de-
signs of the arithmetic and logic unit (ALU) and the address
generation unit (AGEN) from the OpenSPARC T1 architec-
ture [28] and built an RTL model of the SPARC V9 decoder
based on the decoder in GEMS. The Decoder module de-
codes one 32-bit instruction word per cycle and generates
the signals modeled by our parch-level simulator. The ALU
module is capable of executing arithmetic (add, sub), logical
(and, or, not, xor, and mov), and shift (shift-left and shift-
right) instructions. The AGEN module computes the effec-
tive virtual address given the operand values of the mem-
ory (load/store) instruction. Using Synopsys Design Com-
piler, we synthesized these modules at 1GHz with the UMC
0.13pm standard cell library. Further, this synthesis tool also

Base Processor Parameters

Fetch/Decode/
Execute/Retire rate
Functional Units

4 per cycle

2 Int add/mul, 1 Int div,

2 Load, 2 Store, 1 Branch,

2 FP add, 1 FP mul, 1 FP div/sqrt
1 add, 4 mul, 24 divide

4 default, 7 mul, 12 divide

Integer Unit latencies
FP Unit latencies

Reorder Buffer size 128
Register File size 256 integer, 256 FP
Unified Load-Store Queue | 64 entries

Base Memory Hierarchy Parameters

Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle

L2 (Unified) IMB

L2 hit/miss latency 6/80 cycles

Table 1. Parameters of the simulated processor.

generates the SDF (Standard Delay Format) file that contains
the delay information of each gate and wire within the syn-
thesized gate-level module. The Cadence NC-Verilog simu-
lator then performs gate-level timing simulations with infor-
mation provided in this file. For delay faults (described in
Section 3.2), we modify the post-synthesis SDF file to incor-
porate added delays.

This simulation setup allows us to inject permanent faults
under different fault models into the ALU, the AGEN, and
the Decoder, and to observe their impact on real workloads (6
SpecInt2000 and 4 SpecFP2000) running on the Sun Solaris-
9 operating system. Both the application and the OS run on
a simulated 4-wide out-of-order processor (Table 1) support-
ing the SPARC V9 ISA.

3.2 Fault Models

In our experiments, we injected faults according to the
following fault models to study differences in system-level
effects among faults injected at the parch level and the gate
level. In all cases, we inject single bit (or single wire) faults.
Gate-level stuck-at fault model: The gate-level stuck-at
fault model is a standard fault model applied in manufac-
turing testing. We inject both stuck-at-0 and stuck-at-1 faults
in randomly chosen wires in the circuit.

Gate-level timing fault model: It has been shown that
aging-related faults result in timing errors in the faulty gate,

with increasing delay as the aging worsens [3]. Ideally, we
would like to model this effect using transition fault models
and path delay faults, with different amount of delays. Here,
we experiment with two delay fault models: (1) We inject
a one-clock-cycle delay into the faulty gate such that timing
violations occur along all paths containing the gate when a
transition occurs. (2) The faulty gate is injected with a half-
clock-cycle delay, potentially causing a subset of the gate’s
output cone to violate timing.

Microarchitecture-level stuck-at fault model: Due to the
absence of more accurate fault models, stuck-at faults at the
input/output latch of a faulty parch-level unit have been used
to estimate the effect of gate-level faults (both stuck-at and
timing-related faults). We adopt this fault model, injecting
both stuck-at-0 and stuck-at-1 faults in the input of the De-
coder and the output latch of the ALU or AGEN.

3.3 Studying System-Level Effects

A key objective of this study is to understand the differ-
ences, if any, in system-level manifestations of parch-level
and gate-level faults within parch-level structures. For this
purpose, we use the SWAT symptom-based detection scheme
because these detectors essentially capture how hardware
faults manifest into the system level and software [12].

We inject faults using the fault models described in Sec-
tion 3.2 and rely on SWAT-Sim’s full-system parch-level
simulator to propagate the fault effect to the software for the
SWAT detectors to detect. Specifically, we use the following
SWAT detectors — (1) FatalTraps, such as memory address
misalignment, illegal instruction, etc., denoting an abnormal
software execution, (2) Hangs of the application and the OS,
identified using a hardware hang detector, and (3) HighOS,
representing abnormal executions that have excessive con-
tiguous OS instructions (30,000 contiguous instructions for
our experiments) [12]. Following the methodology used in
[12], we consider faults detected within 10 million instruc-
tions (after corruption of some architectural state) to be re-
coverable (e.g., using pure hardware [19, 26], or hybrid hard-
ware/software recovery schemes). Therefore, for each fault
injection run, SWAT-Sim performs a detailed timing simula-
tion (both parch and gate-level) for 10 million instructions
after the first architectural state corruption.! If there is no
architectural state corruption for 10 million instructions after
the fault injection, the fault is assumed to be masked and the
simulation is terminated.

Thus, at the end of the above 10 million instruction win-
dow, a fault results in one of the following outcomes: (1)
parch-Mask: the parch-level state (output latches of ALU,
AGEN, and Decoder) is never affected. (2) Arch-Mask: the
architectural state is not corrupted. (3) Detected: a detec-
tion occurs. (4) Unknown: the fault is neither detected nor
masked at the parch and architecture level.

The faulty cases that result in unknown are then simulated
in functional mode and can have one of three outcomes: (1)
Application-level masking: even though the fault corrupts the

! Architectural state corruptions are determined by continuously compar-
ing against a golden fault-free run (see [12]).

architectural state, the application output remains correct. (2)
Detected>10M: the fault is detected later in the execution,
but is deemed not recoverable. (3) Silent data corruption
(SDC): the fault remains undetected and corrupts the appli-
cation output.

Given the injection outcomes, we study the differences
between the various fault models using two metrics, coverage
and detection latency, as follows.

Coverage: We define coverage as the percentage of un-
masked faults that are detected within 10 million instructions
and calculated as W% x 100, where parch-
Mask, Arch-Mask, and App-Mask constitute masked injec-
tions.

Detection Latency: The latency of detection determines the
recoverability of the fault. Faults with shorter detection la-
tencies can be fully recovered using hardware techniques
(e.g., [19, 26]) with little hardware buffering to handle in-
put/output commit problems. On the other hand, while the
memory state corrupted by faults with longer detection la-
tencies can be recovered using hardware techniques, the sup-
port for handling the input/output commit problems would
be more complex and may require software involvement.
We measure the latency of detection from the instruction at
which the architectural state (of either the application or the
0OS) is corrupted until the detection.

3.4 Parameters of the Fault Injection

Our fault injection campaign consists of several runs for
each of our 10 applications, with 1 fault injected per run. For
each combination of fault model (Section 3.2), faulty struc-
ture, and application, we inject a fault in one of 4 different
randomly chosen points in the application and one of 50 dif-
ferent points in the faulty unit. For the gate-level stuck-at
and delay fault models, the 50 points in a structure are cho-
sen from the 1853, 2641, and 757 wires of the synthesized
gate-level representation of the Decoder, ALU, and AGEN
respectively. For the parch-level faults, these points are ran-
domly chosen from the 32 bits of the input latch of the De-
coder and from the 64 bits of the output latches of the ALU
and AGEN. Further, since there are multiple decoders, ALUs
and AGEN units in our superscalar processor, one of them
is chosen randomly for each injection. We also ensure that
the samples are chosen so that gate-level stuck-at and delay
faults are injected in the same set of wires to facilitate a fair
comparison among the gate-level faults.

This gives us a total of 2000 simulations per fault model
per structure (4 x 10 x 50). Each injection run whose fault is
not masked is a Bernoulli trial for coverage (either detected
or not). Further, since the injection experiments are inde-
pendent of each other, this gives us a low maximum error of
1.1% for the reported coverage numbers, at a 95% confidence
interval.

3.5 Limitations of the Evaluation

Here, we list some of the assumptions and limitations of
our evaluation.

e SWAT-Sim assumes that a Verilog description of the
module of interest is readily available for interfacing.
This is true for the large fraction of the processor that
is typically re-used from older tape-outs. However, for
modules that are yet to be developed, neither SWAT-
Sim nor pure gate-level simulators can be used to per-
form fault injection experiments. As these models start
to become available, SWAT-Sim can be incrementally
interfaced with them.

e Using SWAT-Sim, we study the propagation of gate-
level faults in only three microarchitecture units (De-
coder, ALU, and AGEN) as we could not find other
Verilog modules close enough to the SPARC architec-
ture modeled by the parch-level simulator (we used the
in-order UltraSPARC T1 as our Verilog source and the
out-of-order GEMS as our parch-level source).

e The timing information generated in the SDF file rep-
resents pre-layout timing, which does not reflect accu-
rate post-layout timing for both gate delays and inter-
connect. By extracting this information using a place-
and-route tool, the accuracy of our timing simulations,
and thus our results, can be further improved.

e Although prior work has suggested other statistical de-
lay models for timing faults (e.g., based on threshold
voltage and temperature [16, 24]), we inject fixed and
arbitrarily chosen delay that may or may not represent
real-world failure modes. Integrating more accurate
lower-level timing fault models in SWAT-Sim is a sub-
ject of our future work.

In spite of these assumptions and limitations, the results
presented in this paper demonstrate the importance of us-
ing hierarchical simulators, such as SWAT-Sim, to accurately
model gate-level faults at the parch level.

4 Results

The hierarchical nature of SWAT-Sim allows us to achieve
gate-level accuracy in fault modeling, at speeds compara-
ble with parch-level simulators. We first summarize SWAT-
Sim’s performance when compared to both the parch-level
simulation and pure gate-level simulation (Section 4.1). We
then use the SWAT-Sim simulator to first evaluate the accu-
racy of the previously used parch-level stuck-at fault mod-
els for representing gate-level faults (Section 4.2). Subse-
quently, we extensively analyze the reasons for the differ-
ences in the manifestations of gate-level faults from parch-
level faults (Section 4.3). From this detailed analysis, we de-
rive two candidate probabilistic parch level fault models for
modeling gate-level stuck-at and delay faults (Section 4.4).

4.1 Performance Overhead of SWAT-Sim

To understand the performance overhead incurred by
SWAT-Sim when compared with pure parch-level simula-
tion, we profile a set of 40 fault-free runs for each structure

Unit Fault Model [Max [Avg ‘

Gate Stuck-At | 2.20 | 1.56

ALU Gate Delay 2.65 | 1.93
Gate Stuck-At | 1.59 | 1.26

AGEN Gate Delay 1.89 | 1.35
Decoder Gate Stuck-At | 291 | 2.12
Gate Delay 5.10 | 2.91

Table 2. Slowdowns of SWAT-Sim when compared to pure
parch-level simulation.

and each fault model. We do not inject a fault in the de-
sired faulty unit, but force the unit to be simulated at the gate
level. To be conservative, we always use the most utilized
unit for this purpose (e.g., ALU O for faulty ALU). For delay
faults, we simulate the chosen unit with SDF timing annota-
tion. Table 2 shows the maximum and average slowdowns of
SWAT-Sim compared to pure parch-level simulation, when
simulating the ALU, the AGEN, and the Decoder across dif-
ferent fault models.

Overall, the worst average-case slowdown of SWAT-Sim,
compared to the parch-level simulation, is under 3x, which
is an acceptable overhead considering SWAT-Sim’s ability to
model gate-level faults. In particular, Table 2 shows that the
Decoder incurs the most overhead, with average slowdowns
of gate-level stuck-at and delay faults being 2.12x and 2.91x
respectively. The average slowdowns of the ALU and the
AGEN are under 2x. The maximum slowdowns observed for
the ALU and the AGEN are under 2.7x and 2x, respectively
while the overall maximum slowdown of 5.1x is measured
for the Decoder. The Decoder incurs higher overhead than
other units because it sits at the processor front-end and is
more utilized than the ALU and the AGEN.

As expected, the delay fault simulations always incur
higher overhead than the stuck-at fault simulations because
simulating delay faults requires timing information which is
more compute-intensive.

Since we do not have the corresponding gate-level model
of the superscalar processor we simulate at the parch level,
we cannot directly determine the performance benefit of
SWAT-Sim over pure gate-level simulation. Instead, we de-
rive a rough conservative estimation of the performance ben-
efit as follows. Assume (conservatively) that we need to
simulate a fault in a circuit that contains 4 times the num-
ber of gates and is utilized twice as often as the Decoder.
Assume that the full superscalar processor we wish to sim-
ulate has 25 million gates. Assuming SWAT-Sim’s worst-
case slowdown is linear to the utilization and the size of the
gate-level module and the baseline parch simulator simulates
at the rate of 17k instr/sec (which is the measured average
speed of our parch-level simulator), it would take SWAT-

Sim 10M instr x 52507 = 6.7 hr to simulate 10

million instructions in the worst case. On the other hand,
conservatively assuming the gate-level simulator simulates
25M gates-cycles/sec (more than 1300x the speed reported
in [20]) and the execution has an IPC of 1, it would take
10M instr x 1 instr/cycle>2<5215\>/I]\/[g(;fzetisfcycles/sec = 2778 hr
to simulate 10 million instructions. SWAT-Sim thus achieves

94 94 89 85
ES———

99 100 96 95 95 90

4 97 96 98 95 95 100100
100% 23 re—

S -

» 90%

3 80%

'S

7 70%

2 60%

£ 50%

o

gAO%

£ 30%

@

< 20% il

% 10%

0%

ole ol o olo ol ol=]leole ol=
> > > > > >
& 1318 [SI9[2[Z] 13I8 [9]%[2[2] 18]S
>lo E- 3 K- Q >lo E-3 K- ol > E-2 K-
g5 1elel Is151El>] 1elel |1=l5El>] |ele
8135 S|g| |° 815 S|l |1°l1°]8]3 Ef
a a a
INT ALU AGEN Decoder

Oparch-Mask
@ Detected

Figure 2. Efficacy of the SWAT fault detection
scheme [12] under different fault models for the ALU,
AGEN, and Decoder. Depending on the fault model and the
structure, the parch-level fault may or may not capture the
system-level effects of gate-level faults accurately, as indi-
cated by the differences in coverage.

& Arch-Mask [App-Mask
Detected>10M ESDC

a 417x speedup over traditional gate-level simulation.

4.2 Accuracy of Microarchitecture-Level
Fault Models

We next investigate the accuracy of parch-level fault mod-
els. If these fault models were accurate enough, then we can
eliminate gate-level simulations entirely, thus eliminating the
need for SWAT-Sim and its overhead.

4.2.1 Comparison of Coverage

Figure 2 compares the efficacy of the SWAT scheme in de-
tecting different faults injected using different fault models
into the ALU, the AGEN, and the Decoder. The bars repre-
sent the outcomes for the parch-level stuck-at-1 (uarch s@1)
and stuck-at-0 (uarch s@0) models, the gate-level stuck-
at-1 and stuck-at-0 models (Gate s@1 and Gate s@O0, re-
spectively), and the gate-level 1-cycle-delay and 0.5-cycle-
delay models (Delay lcyc and Delay 0.5cyc, respectively).
Each bar shows the fraction of fault injections that are
microarchitecturally masked (uarch-Mask), architecturally
masked (Arch-Mask), application-masked (App-Mask), de-
tected within 10M instructions (Defected), detected beyond
10M instructions (i.e., not recoverable) (Detected >10M),
and those that lead to silent data corruptions (SDC). The
number on top of each bar represents the coverage.

Figure 2 shows that depending on the structure and the
fault model, the parch-level fault model may or may not ac-
curately capture the effect of gate-level faults, as indicated by
the coverage. For the AGEN, the coverage of parch stuck-at
faults is similar to that of the gate-level stuck-at and 1-cycle
delay fault models (between 94% and 97%). However, the
coverage of 0.5-cycle delay AGEN faults is noticeably lower
(90%). For the Decoder and the ALU, the coverage for the
parch-level stuck-at faults is near perfect (99+%) while the
coverage of the gate-level stuck-at faults (94% for the ALU
and between 96% and 98% for the Decoder) and the Decoder

delay faults (95%) is slightly more pessimistic. In contrast,
the coverage of the ALU delay faults is significantly lower
(89% and 85% for 1-cycle and 0.5-cycle delay faults, respec-
tively).?

The following analyzes the faults that do not result in de-
tection in more detail.

Masking: A large source of discrepancy among the dif-
ferent fault models lies in the masking rate (uarch-level, ar-
chitectural, and application masking). The parch-level stuck-
at fault models have very little masking of all three kinds
(on an average, 0.3% for the Decoder, 2% for the ALU, and
under 9% for the AGEN), while the gate-level fault models
show a much higher rate of masking (>30% for all struc-
tures, with 0.5-cycle delay faults in the AGEN having the
highest masking rate of 54%).

The masking rates of parch-level faults are low mainly
because the faults are rarely parch-masked when compared
to gate-level faults. As parch-level faults directly change the
latch data, the only case where it does not result in a parch
corruption (i.e., is parch-masked) is when the data does not
activate the latch fault, e.g., correct data value of 0 masks
a stuck-at-0 fault. At the gate level, there are two scenarios:
(1) the fault at the gate is not activated, and (2) the fault is ac-
tivated but does not propagate due to other signals in the cir-
cuit. Thus, the gate-level faults see much higher pzarch mask-
ing rates. Further, the parch-level faults are hardly masked
at the application and architecture levels since the they tend
to perturb the data more severely and cause symptoms more
easily than the gate-level faults.

Interestingly, gate-level faults injected into the 3 struc-
tures exhibit different masking behaviors. All structures have
high parch-level masking. However, architectural masking is
significant only for the Decoder (25% to 31%) and applica-
tion masking is substantial only for the ALU (35% to 42%).

Decoder faults are more likely to be masked at the archi-
tecture level than other structures. For these cases, we ob-
serve that the faults affect a subset of instructions of types
that are sparingly used and corrupt only wrong-path instruc-
tions. Thus, even though the gate-level faults become mi-
croarchitecturally visible, they are not activated again after
the pipeline flush and thus the fault becomes architecturally
masked. For the ALU and AGEN, however, we see relatively
few faults that get activated only by speculative instructions.

On the other hand, a significant number of ALU faults are
masked by the application. This is likely due to the activated
faults being logically masked. For example, suppose instruc-
tion 1 < r2 4 r3 uses the faulty ALU and the fault causes
r1 to change from 1 to 2. If r1 is only used for the branch
instruction beq 71,0, L, the fault effect is masked by the ap-
plication. This type of masking is relatively rare in other
structures. Since it is more likely for Decoder faults to affect
the program control flow and for AGEN faults to change the
addresses of memory accesses, these faults, once activated,

2We found the coverage with SWAT-Sim improves significantly (from
89% to 94% for 0.5-cycle delay faults in ALU) when the undetected cases
are run for 50M instructions, showing that SWAT’s detectors remain effec-
tive at this longer latency (which is still recoverable [19]).

100%
» 90%

3 80%
w
= 700
270/« H<10M
3 60% A<IM
850% E <100k
340% O<10k
> O<1k
£ 30%
Q
© 20% 4
0
2 10% 4
0%
(=2 b= B33 B3 =1 b~ (=2 b= B33 B3 [=2 b (=2 b 22 B ol
ozl 12|12 |19I2]3]al (91 (@932l |9
||~ | a|a ||+~ | a|a o|o|-|o a|lan
olol>|c <ls olo]l>|c <cls olol>|c <cl|ls
‘65%% ele ‘65%% ele ﬁﬁ%: ele
S1c18ls! (1518 [C1°|8)15] [SIE] [°IC1815] 81§
a a a
ALU AGEN Decoder

Figure 3. Latency of fault detection in terms of number
of instructions executed from architectural state corruption
to detection. The differences in the models impact recovery,
which is primarily governed by these latencies.

usually lead to detectable symptoms (i.e., not masked).

SDC: Similar to the overall coverage, the SDC rates (per-
centage of total injections that result in SDC events) are de-
pendent on the type of fault and the structure in which the
fault is injected. While the SDC rate is higher for gate-
level faults than parch-level faults in the ALU (1.8%—4.4%
vs. 0%-0.5%, respectively) and the Decoder (0.4%—1.2%
vs. 0.1%-0.2%, respectively), the SDC rates of the AGEN
faults are nearly identical (1.6% for 0.5-cycle delay faults
and 0.5%-0.8% for others).

The SDC rates are high for the gate-level faults in the
ALU because these faults are rarely activated and only per-
turb the data value slightly once activated. In contrast, the
parch-level stuck-at faults are easily activated and less likely
to cause SDCs.

The above differences in manifestations are largely gov-
erned by how the fault at the gate level becomes visible to the
microarchitecture (activation rate, which latch bits are cor-
rupted, etc.), as analyzed further in Section 4.3.

4.2.2 Latency to Detection
We next discuss how the parch- and gate-level fault models
compare in terms of detection latency.

Figure 3 gives the total number of instructions executed
after the architectural state is corrupted, until the fault is de-
tected, for each unit under each fault model. The detected
faults are binned into different stacks of the bar based on their
detection latencies (from 1,000 to 10 million instructions).

As mentioned previously (Section 3.3), the latency to de-
tection has direct bearing on the recoverability of the applica-
tion and the system. Hardware buffering, required for hard-
ware recovery, can buffer 1000s of instructions, but can be
expanded through intelligent design to tolerate latencies of
up to millions of instructions [19, 26].

From Figure 3, we see that the percentage of detected
faults for which the software can be recovered using re-
covery techniques that can tolerate short latencies of under
10K instructions is different under different fault models for

Fault Acti

Gate s@0
parch s@0
Gate s@0

parch s@1
parch s@0

Delay 1cyc
Delay 0.5cyc
Delay 1cyc
parch s@1
Delay 1cyc
Delay 0.5cyc
parch s@0
parch s@1

>

Figure 4. Mean fault activation rate for the different fault
models as a percentage of the number of instructions.

the three structures. While the parch-level stuck-at-1 model
shows that a larger fraction of faults are recoverable for the
above latency than gate-level stuck-at faults, the recoverable
faults for parch-level stuck-at-0 faults is lower.

From these differences in system-level manifestations, we
infer that parch-level stuck-at faults do not, in general, accu-
rately represent gate-level stuck-at or delay faults. This mo-
tivates either building more accurate parch-level fault mod-
els, or in their absence, using the SWAT-Sim infrastructure
to study the system-level effect of gate-level faults.

4.3 Differences Between Fault Models

Before we attempt to derive a more accurate parch-level
fault model than the existing ones, we investigate the funda-
mental reasons for the different behaviors of the parch-level
and gate-level fault models. In the following sections, we try
to understand the differences by comparing the fault activa-
tion rates and the data corruption patterns at the microarchi-
tectural state across different fault models.

4.3.1 Fault Activation Rates
The fault activation rate of a given faulty run is defined as the
percentage of instructions that get corrupted by the injected
fault among all instructions that utilize the faulty unit. We
collect the activation rates for all faulty runs that do not result
in parch-masked, calculate the weighted arithmetic mean for
each fault model, and present these numbers in Figure 4. Be-
cause the different runs execute different numbers of instruc-
tions, we weight the activation rate of each run by the total
number of instructions executed by the faulty unit and calcu-
late the weighted mean.

Figure 4 shows that the parch-level stuck-at faults present
a higher activation rate than faults injected at the gate-level.
For the ALU, the parch-level faults have a >4% activa-
tion rate, while the activation rates of gate-level faults are
at most 1.6%. For the AGEN, the corresponding numbers
are >9% and <7% respectively. The Decoder faults tend to
have higher activation rates than faults in other structures be-
cause decoders are utilized more; the Decoder parch-level
faults have activation rates >19% while the rates of gate-
level faults are <7%. The activation rate for gate-level faults

is lower because activating gate-level faults requires both ex-
citation and propagation to the output latch, while the parch-
level fault is directly injected into the latch. Additionally, the
parch-level stuck-at-1 fault has a significantly higher activa-
tion rate than the other fault models (36%, 45%, and 47% for
the ALU, the AGEN, and the Decoder respectively). This
high rate is caused by the biases in data values towards zero.

Further, we notice a difference in the activation rates be-
tween the gate-level stuck-at and delay faults, with the delay
fault models exhibiting lower rates of activation for all struc-
tures. Less than 2% of instructions activate the 1-cycle delay
faults and 0.5-cycle delay faults in all 3 structures, with the
lowest average activation rate being 0.6% for 0.5-cycle delay
faults in the AGEN. The lower average activation rate can be
explained with the different excitation conditions for the two
models. A stuck-at-X fault is excited when the signal at the
faulty net is X . Thus, if the probability of having a logic 1 at
the faulty net is p, the probability of exciting the stuck-at-0
fault at that wire is p and that of exciting the stuck-at-1 fault
is (I-p). A delay fault, on the other hand, is active only if
there is a transition at the faulty wire and hence the excita-
tion probability is p(1-p), which is always smaller than that
of the stuck-at faults. This lower probability of excitation
generally results in a lower average activation rate for gate-
level delay faults. Further, while an activated 1-cycle delay
fault causes all paths from the faulty net to the output latch to
miss timing, a 0.5-cycle delay fault usually results in fewer
errors observed at the output as it can be the case that some
paths from the faulty net to the output do not violate timing.

Although the higher activation rates (Figure 4) of parch-
level stuck-at faults result in higher coverage (Figure 2) for
the ALU and Decoder, we do not find such a correlation for
the AGEN. When comparing gate-level faults of the same
structures, stuck-at faults have higher activation rates and re-
sult in slightly higher coverage than delay faults for the ALU
and Decoder, but not for the AGEN. Nonetheless, higher ac-
tivation rates do not necessarily drive the coverage up. Ad-
ditionally, we find no direct correlation between activation
rate and latency of detection. Thus, factors other than just
activation rate need to be investigated if we are to succeed
in deriving better parch-level fault models. We next look at
how activated faults manifest at the output latches (i.e., at the
parch-level).

4.3.2 Corruption Pattern at the Microarchitectural
State

While an activated parch-level fault corrupts only one bit in

the microarchitectural state, an activated gate-level fault may

corrupt multiple bits once it becomes visible in the microar-

chitectural state.

Table 3 shows the number of bits corrupted at the output
latch (microarchitectural state) for different fault models for
a fault in the ALU, the AGEN, and the Decoder. For each
fault model, it shows the percentage of instructions that have
different number of bits flipped at the output latch. The bits
are binned on a log scale.

Table 3 shows that the corruption patterns of parch-level

faults for the ALU, AGEN, and Decoder are quite differ-
ent from those of the gate-level faults. While parch-level
ALU and AGEN faults are injected in the output latches and
corrupt at most one bit, the corresponding gate-level faults,
though usually corrupt one bit, can result in multi-bit corrup-
tions (between 9% and 25% across the ALU and the AGEN).
However, for parch-level Decoder faults, although faults are
injected at the input latch, the resulting multi-bit corruptions
turn out to be too aggressive (22% of corruptions for parch-
level faults are 8+ bits while the corresponding numbers for
gate-level faults are less than 15%). This is because the out-
put cone of the input (output) latch of the faulty unit is too
large (small) when compared to that of a gate-level fault and
leads to aggressive (conservative) bit corruptions at the out-
put latch.

To better understand how the microarchitectural state gets
corrupted by the injected faults, we collect the probability
that bit ¢ was flipped, given an instruction activates the un-
derlying fault. Figures 5(a) and (b) show the distribution
of the probabilities of a given bit in the output latch (num-
bered from bit 0 to bit 63) to be faulty under parch-level
stuck-at-0, gate-level stuck-at-0, and gate-level 1-cycle delay
models for the ALU and the AGEN respectively. For brevity,
we omit the parch-level stuck-at-1, gate-level stuck-at-1, and
0.5-cycle delay models.

From the figures, we see that the probabilities of bit-flips
of the parch-level model are vastly different from the gate-
level models. Further, the probability of flipping lower order
bits is higher for parch-level faults as the applications we
use predominantly perform computations on the lower order
32-bits. The difference presented here is another source of
discrepancy of the parch-level model to represent gate-level
faults.

When comparing the two gate-level fault models, interest-
ingly, both have very similar corruption patterns even though
they differ in terms of coverage, detection latency, activa-
tion rate, and number of bit-flips. To investigate this phe-
nomenon, we studied the differences between corruption pat-
terns of the gate-level stuck-at and delay fault injected at the
same net and made the following observation: delay faults
generally yield more corruption patterns than the stuck-at-0
faults because they can cause the same bit to be corrupted
in both directions, instead of a single direction in stuck-at-0
faults. While this higher number of corruption patterns may
cause delay faults easier to be detected, we note that the av-
erage activation rate of delay faults is also lower than that of
stuck-at faults, as explained in Section 4.3.1, making them
harder to detect and causing longer detection latencies.

Overall, our analysis shows that the different activation
rates and bit corruption patterns paint a clearer picture in ex-
plaining the differences in the coverage (Figure 2) and the
detection latencies (Figure 3) between parch-level and gate-
level faults. We found that higher activation rates of parch-
level stuck-at-1 faults typically cause higher coverage (and
lower detection latencies) than gate-level faults, but it is not
a perfect correlation. In some cases, despite significant dif-
ferences in activation rates, the coverage of gate-level and

ALU AGEN Decoder
Bits 1 2 4 8 9+ 1 2 4 8 9+ 1 2 4 8 9+
parch 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% | 72.5% 0.2% 4.8% 89% 13.4%
Gate s@1 91.1% 47% 12% 1.1% 1.9% 87.1% 68% 50% 1.0% 0.1% 66.1% 149% 10.5% 6.2% 2.3%
Gate s@0 84.4% 4.6% 28% 1.1% 7.1% 75.5% 84% 8.6% 14% 0.0% 60.8% 223% 122% 2.6% 2.2%
Delay lcyc 90.4% 39% 14% 1.1% 3.2% 90.5% 41% 37% 15% 02% 71.7% 11.1% 125% 1.7% 2.9%
Delay 0.5cyc 75.0% 58% 22% 39% 13.1% 83.7% 79% 31% 24% 28% 682% 12.8% 43% 279% 12.0%
. Percentage of bits incorrect at the output latch.
Table 3. P geof b he output latch
18% ——parch s@0 18% —=—parch s@0
16% —o— Gate s@0 16% —o—Gate s@0
14% n —+—Delay 1cyc 14% ,\| —+Delay 1cyc
g1z%-/\ 2 12% 4
w w
5 10% 2 10%
5 g 5 8%
s] .
a 6% a 6%
4% 4%
O/Trwwrwwr}-wrrmaﬂ-n-:-.—m-}/ 0% +9% D i

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Corrupted Bit in Output Latch

(a) ALU

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Corrupted Bit in Output Latch

(b) AGEN

Figure 5. Probability of corrupting each bit of the output latch, under parch-level s@0, gate level s@0, and gate level delay models.

parch-level faults is quite close. This is because once ac-
tivated, gate-level faults cause different multi-bit corruption
patterns. In some cases, these patterns are more intrusive
than the parch-level fault corruptions, boosting the coverage
of the gate-level faults despite their lower rate of activation.
In other cases, the higher intrusiveness of the multi-bit cor-
ruptions is not enough to compensate for the very low acti-
vation rates — this is specifically the case for gate-level delay
faults which see the lowest coverage numbers.

We see that such complex interactions have a push-and-
pull effect in determining the system-level outcome of faults
and conclude that simple parch-level stuck-at faults are inac-
curate for modeling gate-level faults because they fail to (1)
capture the system-level behavior, such as application-level
masking, (2) induce different activation rates, and (3) ac-
curately model parch-level multiple bit corruption patterns.
Therefore, any accurate parch-level fault model for gate-
level faults must account for all these factors to accurately
capture their behavior.

4.4 Probabilistic parch-Level Fault Models

Given the inaccuracy of the parch-level stuck-at fault
model, we investigate whether we can derive alternate parch-
level fault models based on our analysis of the manifestation
of the gate-level faults (both stuck-at and delay) at the mi-
croarchitecture. Such a model would be invaluable for ac-
curately simulating the effect of the fault at the parch-level,
without invoking a gate-level simulator.

We investigated the behavior of the gate-level stuck-at and
delay faults and found that each gate-level fault is activated
differently and leads to different software-level outcomes.
Hence, in our first-cut parch-level fault model, we develop
probabilistic models on a per-run basis, i.e., a different prob-

10

abilistic model for each injected gate-level fault. In partic-
ular, we profile each SWAT-Sim run and collect the proba-
bilities of the number of bits flipped at the output latch, the
patterns of the flips, and the directions of the flips. Based on
the collected information, we then derive two probabilistic
parch-level fault models, called the P-model, and the PD-
model, respectively.

In the P-model, when an instruction uses the faulty unit,
we decide on which bits to flip in the output latch based on
the previously observed probabilities of the different number
of bit-flips for this gate-level fault injection run (essentially
using a table like Table 3, but built on a per-run basis). We
then condition on this probability to decide on the pattern of
the flip (similar to Figure 5 for different numbers of bit flips,
but again on a per-run basis). All the bits indicated by this
pattern are then flipped.

The PD-model refines the P-model by enforcing the di-
rection of the bit-flips based on the profiling runs. That is, if
the observed corruption pattern in the profiling run shows bit
3 of the output latch has a 1-to-0 (0-to-1) corruption, in the
PD-model, this bit is corrupted only if itis a 1 (0).

We developed the P-model and the PD-model for both the
gate-level stuck-at-0 and 1-cycle delay faults for the ALU
and the AGEN. Figure 6 shows the ability of the P-model
and the PD-model in mimicking the behavior of the corre-
sponding gate-level fault models, evaluated using the cover-
age (similar to Figure 2). The number on top of each bar
gives the coverage of the SWAT detectors for faults injected
in that fault model. The results for gate-level stuck-at-1 and
0.5-cycle delay faults are not shown for the sake of clarity of
the figures, and lead to similar conclusions as the other fault
models.

100 98 94 99 98 89 99 98

100%
c 90%
S 80%
70%
60%
50%
40%
30%

[o]

n
<
o~

Percentage of Inject

10%
0%

5 1 £ ° o 13 o o
1% 5| 3|3 3| 3|3
5| = 13| =
= a a = a a
7} o 7 [
parch Gate s@0 Delay 1cyc
parch-Mask O Arch-Mask m App-Mask
=D d gD d>10M =SDC
(a) ALU

100%
c 90%
£ 80%
70%
60%
50%
40%
30%
20%
10%

0%

O

Percentage of Inject

b L 13]) £ o °
3 I S|1d|a
7] o 7 [
parch Gate s@0 Delay 1cyc
parch-Mask O Arch-Mask o App-Mask
® Detected SDetected>10M ®=SDC
(b) AGEN

Figure 6. The accuracy of the derived P- and PD-models for modeling gate level faults in (a) ALU and (b) AGEN, evaluated using
the coverage of the SWAT detectors. The models closely mimic the masking outcomes (parch-Mask+Arch-Mask) of the gate-level
faults but do not, in general, accurately model their system level effects, resulting in differences in coverage.

From the figures, we see that both the P-model and the
PD-model follow the parch-level masking effects of the
gate-level faults more closely than the parch-level stuck-at
faults. Nevertheless, the P- and PD-models for both gate-
level stuck-at-0 and 1-cycle delay ALU faults are unable to
capture the application-level masking effect while the two
models for gate-level stuck-at-0 AGEN faults over-estimate
the parch-level masking effect.

In terms of coverage, the P- and PD-models do reasonably
well for gate-level ALU stuck-at-0 fault and AGEN I-cycle
delay fault with differences less than 5%. However, for the
other fault models, the P- and PD- models have 9+% differ-
ences in coverage.

In spite of extensive analysis and modeling, the proba-
bilistic models do not accurately capture the parch-level be-
havior of gate-level faults due to the following reasons.

e The models are oblivious to temporal variation in the
corruption rates, i.e., both the models use the probabil-
ities of injecting k-bit flips as an average rate across all
instructions for injections on a given wire.

e The probabilities on which the models pick the number
of bits to flip, the pattern of the bit-flips, and the direc-
tion of the bit flips are not conditioned on the fault-free
value on which the patterns are applied. For example,
although the pattern says that bit 1 should be flipped
from a / to a 0, if the original value of the bit is 0, no
flips occur. Thus, there are fewer flips than what the
model expects, which skews the probabilities.

e The profiling runs consider the output value but over-
look the input value that activates the fault in the circuit
and produces the corrupted output.

As previously discussed, we derive a different model for
each faulty run in SWAT-Sim that simulates a different fault
in the gate-level circuit. However, for an abstract evalua-
tion and accurate prediction, a unifying model that general-
izes the proposed per-run models must be built. Based on

11

the stated limitations of the P- and PD- models, an accu-
rate unified parch-level model for the gate-level faults may
be realizable. Nonetheless, until such a model is developed,
SWAT-Sim remains an efficient platform for simulating and
observing the system-level effects of gate-level faults.

5 Conclusions

With several parch-level fault tolerance proposals emerg-
ing, models that accurately depict the parch-level effect of
gate-level faults become increasingly important.

This paper proposes SWAT-Sim, a hierarchical simulator
that models only the faulty unit at gate-level accuracy with
the rest of the system modeled at the parch level. The fast
and accurate nature of SWAT-Sim makes it possible to ob-
serve the system-level effects of the gate-level fault models.
Using SWAT-Sim, we evaluate the differences between the
manifestations of parch-level and gate-level faults at the sys-
tem level. We found the simple parch-level stuck-at fault
models to be, in general, inaccurate for capturing the system-
level effects of gate-level faults. Based on an analysis of
the causes for these differences, we derive two probabilistic
parch-level fault models for gate-level faults. However, the
models fail to capture the complex manifestations of gate-
level faults, resulting in inaccuracies.

The inaccuracies in the existing parch-level stuck-at fault
models and the absence of more accurate models motivate
using simulators like SWAT-Sim to accurately model the
parch-level effect of gate-level permanent faults.

Acknowledgments

We would like to thank Pradip Bose from IBM and Sub-
hasish Mitra from Stanford University for initial discussions
on this work, Tong Qi for an initial version of the decoder
module, and Ting Dong for help with statistical analysis.

References

[1] T. Austin et al. Opportunities and Challenges for Better than
Worst-Case Design. In ASP-DAC ’05: Proceedings of the

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

2005 conference on Asia South Pacific design automation,
pages 2-7, New York, NY, USA, 2005. ACM.

T. M. Austin. DIVA: A Reliable Substrate for Deep Submi-
cron Microarchitecture Design. In Proceedings of Interna-
tional Symposium on Microarchitecture, 1998.

J. Blome et al. Self-Calibrating Online Wearout Detection.
In Proceedings of International Symposium on Microarchi-
tecture, 2007.

S. Borkar. Microarchitecture and Design Challenges for Gi-
gascale Integration. In Proceedings of International Sympo-
sium on Microarchitecture, 2005. Keynote Address.

F. A. Bower, D. Sorin, and S. Ozev. Online Diagnosis of
Hard Faults in Microprocessors. ACM Transactions on Ar-
chitecture and Code Optimization, 4(2), 2007.

M. Bushnell and V. Agarwal. Essentials of Electronic Test-
ing for Digital, Memory, and Mixed-Signal VLSI Circuits.
Springer, 2000.

H. Cha et al. A Gate-Level Simulation Environment for
Alpha-Particle-Induced Transient Faults. /IEEE Transactions
on Computers, 45(11), 1996.

K. Constantinides et al. Software-Based On-Line Detection
of Hardware Defects: Mechanisms, Architectural Support,
and Evaluation. In Proceedings of International Symposium
on Microarchitecture, 2007.

C. Dawson, S. Pattanam, and D. Roberts. The Verilog Pro-
cedural Interface for the Verilog Hardware Description Lan-
guage. In Verilog HDL Conference, 1996.

Z. Kalbarczyk et al. Hierarchical Simulation Approach to Ac-
curate Fault Modeling for System Dependability Evaluation.
IEEE Transactions on Software Engineering, 25(5), 1999.

G. Kanawati et al. FERRARI: A Flexible Software-Based
Fault and Error Injection System. [EEE Computer, 44(2),
1995.

M. Li et al. Understanding the Propagation of Hard Errors
to Software and Implications for Resilient Systems Design.
In Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems,
2008.

M. Martin et al. Multifacet’s General Execution-Driven Mul-
tiprocessor Simulator (GEMS) Toolset. Computer Architec-
ture Newsletters, 33(4), 2005.

A. Meixner, M. Bauer, and D. Sorin. Argus: Low-Cost, Com-
prehensive Error Detection in Simple Cores. In Proceedings
of International Symposium on Microarchitecture, 2007.

S. Mirkhani, M. Lavasani, and Z. Navabi. Hierarchical Fault
Simulation Using Behavioral and Gate Level Hardware Mod-
els. In 11th Asian Test Symposium, 2002.

12

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]
[29]

(30]

(31]

B. C. Paul et al. Temporal Performance Degradation Un-
der NBTI: Estimation and Design for Improved Reliability
of Nanoscale Circuits. In DATE, 2006.

A. Pellegrini et al. CrashTest: A Fast High-Fidelity FPGA-
Based Resiliency Analysis Framework. In International Con-
ference on Computer Design, 2008.

M. Pirvu, L. Bhuyan, and R. Mahapatra. Hierarchical Simu-
lation of a Multiprocessor Architecture. 2000.

M. Prvulovic et al. ReVive: Cost-Effective Architecture Sup-
port for Rollback Recovery in Shared-Memory Multiproces-
sors. In Proceedings of International Symposium on Com-
puter Architecture, 2002.

R. Raghuraman. Simulation Requirements For Vectors in
ATE Formats. In Proceedings of International Test Confer-
ence, 2004.

P. Ramachandran et al. Statistical Fault Injection. In Proceed-
ings of International Conference on Dependable Systems and
Networks, 2008.

S. Sahoo et al. Using Likely Program Invariants to Detect
Hardware Errors. In Proceedings of International Conference
on Dependable Systems and Networks, 2008.

J. H. Saltzer et al. End-to-End Arguments in System Design.
ACM Trans. on Comp. Systems, 2(4), 1984.

S. Sarangi et al. A Model for Timing Errors in Processors with
Parameter Variation. In International Symposium on Quality
Electronic Design, 2007.

S. Shyam et al. Ultra Low-Cost Defect Protection for Micro-
processor Pipelines. In Proceedings of International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 2000.

D. Sorin et al. SafetyNet: Improving the Availability
of Shared Memory Multiprocessors with Global Check-
point/Recovery. In Proceedings of International Symposium
on Computer Architecture, 2002.

J. Srinivasan et al. Exploiting Structural Duplication for Life-
time Reliability Enhancement. In Proceedings of Interna-
tional Symposium on Computer Architecture, 2005.

Sun. OpenSPARC T1 Processor. Website, 2007. http:
//www.opensparc.net/.

Virtutech. Simics Full System Simulator.
http://www.simics.net.

N. Wang and S. Patel. ReStore: Symptom-Based Soft Er-
ror Detection in Microprocessors. IEEE Transactions on De-
pendable and Secure Computing, 3(3), July-Sept 2006.

D. Yen. Chip Multithreading Processors Enable Reliable
High Throughput Computing. In Proceedings of Interna-
tional Reliability Physics Symposium, 2005. Keynote Ad-
dress.

Website, 2006.

