

Abstract—OpenSPARC is an open source community
based around hardware design and experimentation aids
for the UltraSPARCTM T1 and T2 chip multi-threaded
(CMT) microprocessors[1]. The UltraSPARCTM T2
processor is the industry's first "server on a chip", with 8
cores, 64 threads and on-chip networking and security. The
richness of the RTL source code, tools and information in
OpenSPARC has made it a comprehensive, practical and
relevant platform for research in several areas of
computing. This paper highlights the potential of using
OpenSPARC for research in hardware reliability. Examples
of University research projects, results achieved, benefits
gained and lessons learned using OpenSPARC are
described. Future research directions in reliability based on
OpenSPARC are proposed.

Index Terms—Multi-threaded microprocessors, Open
Source, Reliability, Fault Tolerance, On-line Test

I.INTRODUCTION

istorically, microprocessors have been designed to
improve the execution performance of single thread

programs by exploiting instruction level parallelism (ILP).
Common techniques used to improve single thread
performance are deep pipelines, multiple instruction issue,
speculation, and out-of-order instruction execution. Recently,
these techniques have reached a point of diminishing returns
because of inherently low or hard to exploit application ILP
[2]. Techniques used to improve single thread performance
often give rise to complex processor designs with poor
pipeline efficiencies and high power consumption

H

OpenSPARC is based on Sun’s UltraSPARCTM T1 [3],[4]
and T2 [5],[6],[7] microprocessors, which are designed for
commercial workloads that exhibit large amounts of thread
level parallelism (TLP). UltraSPARCTM T1 and T2 employ
chip multi-threading (CMT) technology to achieve high
throughput on commercial workloads by taking advantage of
the TLP inherent to such workloads.

OpenSPARC is an open source community based around
hardware design and experimentation aids for UltraSPARCTM

T1 and T2. OpenSPARC provides open source availability of

The author is also affiliated with the School of Computer and
Communication Sciences, École Polytechnique Fédérale de Lausanne.

complete micro-architecture specifications, Verilog RTL
code, a full suite of RTL and architectural simulations and
infrastructure, FPGA implementations of the
microprocessors, reference boards with microprocessors,
hypervisor code and multiple operating system ports [1].

This paper briefly describes the UltraSPARCTM T1 and
T2 architecture upon which OpenSPARC is based. The
reliability and error management features of the architecture
are discussed, especially the benefits of lower temperature
operation achieved through reduced power consumption.
Some ongoing research projects in hardware reliability at
Universities designated as OpenSPARC Centers of
Excellence – Carnegie Mellon University, University of
Illinois at Urbana-Champaign and Stanford University – are
described along with their experiences in using OpenSPARC
for the research. Future research directions in hardware
reliability, error management, fault tolerance and on-line test
based on OpenSPARC are proposed in the final section.

II.OPENSPARC ARCHITECTURE

OpenSPARC is based on Sun’s UltraSPARCTM T1 and T2
microprocessors. The UltraSPARCTM T2 processor is the
industry's first "server on a chip", with 8 cores, 64 threads,
and on-chip networking and security functionality. The
UltraSPARCTM T1 processor is an earlier version with 8 cores
and 32 threads and is described in [3],[4].

A block diagram of UltraSPARCTM T2 is shown in Fig. 1.
Each of the 8 SPARC processor cores has full hardware
support for execution of eight independent threads. Each
SPARC processor core consists of two integer execution
units, a floating point and graphics unit, and a cryptographic
stream processing unit. The eight SPARC processor cores
share an 8-banked, 4MB Level 2 cache (L2). Each bank of
the L2 cache is 16-way set associative with a line size of 64
bytes. The eight banks of L2 allow eight simultaneous
accesses to support the high bandwidth requirements of the
UltraSPARCTM T2.

The SPARC processor cores communicate to the L2 cache
through a high bandwidth, non-blocking, pipelined crossbar
switch. The L2 cache connects to four on-chip DRAM
controllers that interface directly to a pair of fully buffered
(FBDIMM) channels. UltraSPARCTM T2 features an on-chip
PCI-Express unit and two on-chip 10 Gb/sec Ethernet ports
with XAUI Interfaces, making it a true system-on-a-chip.

OpenSPARC: An Open Platform for
Hardware Reliability Experimentation

Ishwar Parulkar and Alan Wood, Sun Microsystems
James C. Hoe and Babak Falsafi*, Carnegie Mellon University

Sarita V. Adve and Josep Torrellas, University of Illinois at Urbana-Champaign
Subhasish Mitra, Stanford University

UltraSPARCTM T2 implements very limited execution
speculation in order to minimize overall power consumption.
To further reduce power, UltraSPARCTM T2 transitions a
thread to a not-ready state whenever a thread encounters a
long latency operation. Clock power is further reduced on
UltraSPARCTM T2 by utilizing clock gating on datapath,
control, and array structures. Power throttling is supported
through 3 external power throttle pins. Based on the state of
the power throttle pins, stall cycles are injected into the
processor core pipeline to reduce overall dynamic power
consumption.

At the circuit level, the design was kept fully static to
minimize power consumption. Extensive coarse and fine-
grain clock gating techniques were used in the core, clusters
and datapaths, where up to 30% of the flops are kept disabled
at any time. In order to reduce static or leakage power, logic
gates with sufficient timing, noise, and slew margins are
replaced with footprint-compatible gates with longer channel
length [6]. UltraSPARCTM T2 includes on-chip thermal
diodes, which enable the system to regulate the die
temperature by controlling the instruction issue rate and by
disabling threads.

III.RELIABILITY IN THE OPENSPARC PROCESSORS

The OpenSPARC CMT architecture provides a major
reliability benefit due to its reduced temperature gradients.
Single-core processors usually have several hot spots at over
100oC and with 30oC–50oC thermal gradients presenting
cooling challenges and requiring special complex thermal
management techniques [8]. In contrast, the distributed
workload across multiple cores and the symmetrical
floorplan allows a very uniform power density, resulting in
not only a cool junction temperature but also in a low
thermal gradient. Silicon measurements running typical
workload applications show a worst-case junction
temperature of 66oC and a 7oC thermal gradient. The hot
spots in the die are located in between the two rows of cores,

where the thermal diodes are placed to monitor and regulate
power.

Overall chip reliability is enhanced since silicon
reliability mechanisms, namely wearout and drift, are highly
dependent on temperature. Wearout mechanisms, like gate-
oxide integrity (GOI) and electromigration (EM), can cause
devices to fail abruptly, leading to an immediate loss of
functionality. As the worst case junction temperature reduces
from typically 105oC to a cooler 66oC, the median GOI time-
to-breakdown increases by a factor of nine while the average
failure rate reduces by a factor of 17 [3]. Drift mechanisms,
like negative bias temperature instability (NBTI) and channel
hot carrier (CHC), degrade silicon devices over time,
impacting performance, and causing shifted beta ratios,
decreased headroom, mismatch, and increased delay
variations [9]. As with wearout mechanisms, drift
mechanisms also show a significant reliability improvement
from lower operating temperature. For example, NBTI
degradation improves by 29% at the lower junction
temperatures, equivalent to an eight-fold increase in lifetime
[4].

The OpenSPARC processors have active power control
features implemented in both hardware and software that
allow individual threads, or even cores, to be idled. Using
this very fine-grained control of power and activity in
combination with their inherent redundancy, multi-core CMT
designs can act as reliability-aware processors [10] In a
reliability-aware processor, active power control can be
generalized to active temperature control. For instance, the
processor could throttle power to limit high temperature
excursions due to system or environmental issues. While
limiting the worst-case temperature seen by a given processor
obviously improves its reliability, this feature can also be
used to optimize the performance-reliability trade-off of all
processors.

This concept can be taken even further to allow
individual processors to adapt to their own environments. For
example, while most processors are located in well-
controlled environments such as datacenters, some processors
may be located in more extreme environments with higher
ambient temperatures. With environmental monitoring, the
reliability-aware processor could individually optimize its
performance while remaining within target reliability
specifications. Finally, a reliability-aware CMT processor has
the ability to dynamically monitor and perform self-testing to
assess its on- going health. In the event that a problem
develops, the processor could adjust or otherwise re-
configure itself to maintain functionality, while alerting the
system console that service may be required.

The OpenSPARC architecture contains significant
protection for on-chip memory structures. As a general
guideline, all memory arrays greater than 8KB are required
to be protected by Single Error Correction/Double Error
Detection Error Correcting Codes (SEC/DED ECC), while
arrays greater than 2KB are required to have parity
protection. Table I shows the protection mechanisms for the
UltraSPARCTM T2 on-chip memories.

Several mechanisms are used to protect main memory.
Chipkill correction technology is implemented to withstand
multi-bit memory errors within a DRAM device, including a

Fig. 1. UltraSPARCTM T2 processor. The block diagram shows the high-level
blocks in the processor and their interconnectivity.

failure that causes incorrect data on all data bits. The T2 is
able to correct any error contained within a single memory
nibble (4 bits), while detecting all errors contained within
any two nibbles. Data is written to DIMM with a checksum
appended. If a memory error occurs, then the data is
immediately recovered by recalculating it from the checksum
information. This approach allows the system to correct not
only single-bit memory errors via standard ECC, but also 2,
3, and 4-bit errors, and even a whole x4 DRAM chip failure.

IV.WHAT IS AVAILABLE IN OPENSPARC FOR EXPERIMENTATION

Under OpenSPARC, a comprehensive set of tools and
aids are available, which make it a rich, practical platform
for a range of research topics.

A.Chip Design and Verification

OpenSPARC T2 chip source code is intended for
members of the hardware engineering community that are
experienced in chip design and verification. The download
for hardware design and verification engineers includes: 1)
Verilog RTL for OpenSPARC T2 design, 2) Verification
environment for OpenSPARC T2, 3) Diagnostics tests for
OpenSPARC T2, 4) Scripts and Sun internal tools needed to
simulate the design and to do synthesis of the design, and 5)
Open source tools needed to simulate the design.

The systems requirements for running this environment
are: SPARC CPU based system with Solaris 9 or Solaris 10
OS and a C/C++ Compiler. Commercial EDA tools required
to do design and verification work are not provided by
OpenSPARC and will need to be obtained independently are
Synopsys VCS© for Verilog simulation and Synopsys Design
Compiler© for synthesis. In addition, for physical design
work, commercial tools from EDA vendors would be
required. Most EDA vendors have versions of their tools
freely available for University research.

B.Architecture and Performance Modeling

The download for architects and software engineers
includes: 1) SAM - SPARC Architecture Model (including
source code), 2) Legion - Fast instruction accurate simulator
for software developers (including source code), 3)
SAM/Legion enhancements to copy files to/from simulated

disk, 4) SAS - Instruction accurate SPARC Architecture
Simulator (including source code), 5) OBP - Open Boot
PROM source code, 6) Hypervisor source code, 7) Solaris
Images for simulation, and 8) RST Trace Tool - RST is a
trace format for SPARC instruction-level traces.

SAM (SPARC Architectural Model) is a full system
simulator that is able to boot hypervisor, OBP (Open Boot
PROM) and Solaris and run applications. It loads SAS
(SPARC Architecture Simulator) as the OpenSPARC T2
simulator, so any modifications made in SAS get
automatically reflected in SAM. SAM is useful for software
bring - for instance, to debug Hypervisor/OBP/Solaris on a
modified CPU implementation. SAM is also useful for
performance analysis, both to generate traces and to connect
with a performance model to perform execution driven
simulation. SAM loads device models as dynamically linked
libraries, and is useful for device driver development, and
device RTL verification.

Legion is a fast instruction accurate simulator that
provides a rapid means of developing and testing software
functionality in the absence of actual hardware. Legion
provides the fastest simulation environment for developing
and testing SPARC Software. Firmware and Software
developers will be the primary users of Legion simulation
environment for the OpenSPARC T2. The RST Tools
package consists of the trace format definition, a trace
reader/writer library, and a trace viewer program.

C.Tools for Tuning and Debug

There are several tools available in the OpenSPARC
distribution that are useful for performance tuning and debug,
including 1) ATS - Automatic Tuning and Troubleshooting
System, 2) Corestat, 3) Discover, and 4) Thread Analyzer.

Automatic Tuning and Troubleshooting System (ATS) is
a binary re-optimization and recompilation tool used for
tuning and troubleshooting applications.

Corestat is an online monitoring of core utilization for
servers designed using the UltraSPARCTM T1 processors.
Core utilization is reported for all the available cores by
aggregating the instructions executed by all the threads in
that core. Its a perl script which forks cpustat command at
run time and then aggregates the instruction count to derive
the core utilization. An UltraSPARCTM T2 core has 2 integer
pipelines where as T1 core has 1 integer pipeline. An integer
pipeline can best execute one instruction/cycle and hence the
maximum core utilization is directly proportional to the
frequency of the processor. For UltraSPARCTM T2, corestat
also reports FPU utilization.

Discover is Sun Microsystems' Memory Error Discovery
Tool that is used by software developers to detect
programming errors related to the allocation and use of
program memory at runtime.

The Thread Analyzer is a tool that analyzes the
execution of a multi-threaded program and checks for a
variety of multi-threaded programming errors such as data
races and deadlocks.

D.Tools for Software Development

Sun Studio 12 software is the premier development
environment for the Solaris operating system. Optimized C,

TABLE I
ON-CHIP ERROR PROTECTION

HW Structure Protection Recovery
Instruction Cache Tag Parity Hardware
Instruction Cache Data Parity Hardware
Windowed Integer Register File SEC/DED ECC Software
Floating Point Register File SEC/DED ECC Software
Data Cache Tag Parity Hardware
Data Cache Data Parity Hardware
Store Buffer Data SEC/DED ECC Software
Store Buffer Tag Parity Software
L2 Cache Data SEC/DED ECC Hardware
L2 Cache Tag Parity Hardware
L2 Cache Coherence SEC ECC Software

C++ and Fortran compilers, combined with Netbeans-based,
IDE and other performance tools, enable Sun Studio 12
software to deliver high performance for single and
multithreaded application development on the latest Sun
hardware platforms. Sun Studio 12 software is also available
for the Linux OS.

Binary Improvement Tool (BIT) works directly with
SPARC binaries to instrument, optimize, and analyze them
for performance or code coverage.

Faban is the consolidation of Sun's benchmark
development and management knowledge and experience. It
is a facility for developing and running benchmarks. It has
two major components, the Faban harness and the Faban
driver framework.

Simple Performance Optimization Tool (SPOT) produces
a report on the performance of an application. The spot
report contains detailed information about various common
conditions that impact performance.

A static source code analysis and code scanning tool that
identifies incompatible APIs between Linux and Solaris
platform and helps to simplify and speed up migration
project estimation and engineering is also available.

V.CURRENT UNIVERSITY RESEARCH IN HARDWARE RELIABILITY

The availability of a wide range of design and analysis
tools spanning chip design and architecture (as described in
section 4) make OpenSPARC an excellent platform for
research in silicon error management. It is also a state-of-the-
art microprocessor that provides a real-life test case with
sufficient complexity for demonstrating research concepts.
Several Universities are actively using OpenSPARC for their
research. A few Universities have been designated as
OpenSPARC Centers of Excellence based on their
involvement with OpenSPARC. This section gives examples
of OpenSPARC use in research in reliability and silicon error
management at three OpenSPARC Centers of Excellence –
Carnegie Mellon University, University of Illinois at Urbana-
Champaign and Stanford University.

A.Carnegie Mellon University

Researchers at CMU have come up with a fingerprinting
based approach for error detection in microprocessor cores
[11]. Architectural fingerprints compress architectural state
updates into a small hash for periodic comparison across
redundant processor cores. The fingerprint is accumulated
over a contiguous interval of instructions. Before retirement,
the cores exchange their respective fingerprint values to
detect single event upsets that have affected instructions in
the interval. Because a single fingerprint can cover multiple
instructions, fingerprinting offers significant bandwidth
savings over directly comparing execution results.
Architectural fingerprints were evaluated using statistical soft
fault injection in the single-core OpenSPARC T1 RTL model.
The Verilog model was simulated using Synopsys VCS with
custom Verilog PLI modules added for soft fault injection.
For each workload, the RTL model was first executed in a
fault-free environment to establish the fault-free fingerprint
values. The model was then run repeatedly with statistical

fault injection. PLI injects faults into several top-level and
representative units in the OpenSPARC T1 design and the
entire SPARC processor core was also studied. Each unit was
exercised with seven multithreaded validation test programs
from the OpenSPARC package. User-level redundant
multithreading, both within and across cores, was also
demonstrated in the OpenSPARC RTL. In both instances,
architectural fingerprints provided on-line error detection and
isolation [13].

Another body of research with a scheme called FIRST
(Fingerprints In Reliability and Self Test) targets detection of
emerging wearout faults in silicon [12],[13]. Studies show
that wearout faults have a gradual onset, manifesting initially
as timing faults before eventually leading to hard breakdown.
FIRST detects wearout faults as they begin to change timing,
but before they affect normal operation. FIRST uses either
architectural fingerprints or existing design-for-test hardware
(scanout chains) alongwith infrequent periodic tests under
reduced frequency guardbands to observe the marginal
timing behavior that is an indication of wearout. FIRST is a
low-overhead, efficient methodology for detecting emerging
wearout faults before they affect normal operation. A Verilog
PLI wearout model was was applied to several units from
the OpenSPARC T1 design to demonstrate potential fault
sites. The design was modified to add scan chains and
fingerprinting logic. Fault injection and simulation was then
performed to evaluate the effectiveness of the fingerprinting
approach.

B.University of Illinois at Urbana-Champaign

One of the research projects at UIUC, SWAT (SoftWare
Anomaly Treatment) is a complete framework for error
detection, diagnosis, recovery, and repair/reconfiguration for
a variety of hardware failure modes with a customizable
tradeoff in reliability, performance, power and area. This
framework spans hardware and software domains and
combines low-cost high-level detection with potentially more
expensive, low-level diagnosis. Some of the ideas that form
the basis of this research are described in [14],[15],[16]. One
key piece of this research project is developing and
validating micro-architecture-level fault models for
microprocessors to achieve fidelity of low-level fault
modeling at the speed of higher-level simulation. A full
system micro-architectural simulator at the highest level is
being interfaced with gate level and timing simulators for
low-level functional and timing simulation using the
OpenSPARC design and Cadence NCVerilog. The two
simulators communicate through the Verilog VPI.

The diagnosis and recovery piece of this research
requires the firmware to be able to perform several tasks such
as 1) control the transfer of checkpoints between faulty and
non-faulty domains, 2) run instruction sequences on specific
processor cores, 3) control and/or read which processor unit
is used by specific instruction sequences, 4) communicate
recovery information to the OS, etc. The firmware is being
implemented on the hypervisor accompanying the
OpenSPARC distribution and will be run on SunFire T2000
multi-core systems designed around the T1/T2 processors.
This implementation will allow for experimentation to

measure overheads due to the firmware for faulty and fault-
free cores.

Another research project deals with errors induced by
semiconductor process variation. The project has the
following areas of focus: 1) modeling variation-induced
errors, 2) design of multi-core micro-architectures to detect
and tolerate variation-induced errors, and 3) techniques to
mitigate variation-induced errors. Some of the work forming
the basis of this research is described in [17],[18], and
OpenSPARC is the experimentation vehicle for extensions to
this work. Physical implementations of the OpenSPARC
design are used to validate the accuracy of the models, and to
evaluate the micro-architectures required to detect, tolerate
and mitigate variation-induced errors. The OpenSPARC
design can be taken through a physical design flow using
commercial synthesis and physical design tools, and the
effects of process variations on critical paths can be studied
very easily. The OpenSPARC RTL source code is being
modified to implement the error-detection, tolerance and
mitigation micro-architectures The modified RTL combined
with the simulation test benches and fault injection routines
are being used to validate the effectiveness of the solutions.

C.Stanford University

Researchers at Stanford University are investigating on-
line test schemes that target early prediction of aging and
infant mortality related failures as well as self-test based
error diagnosis after a failure has occurred. A Concurrent,
Autonomous chip self-test using Stored Patterns (CASP) has
been developed, in which a multi-core processor chip tests
itself by scheduling one or more cores for some form of self-
test without bringing the system down and without any
downtime visible to the end user [19]. The basic idea of
CASP is to store high quality test patterns in non-volatile
memory such as FLASH or hard disks in a system, and
provide architectural and system-level support for testing one
or more cores in a multi-core processor, while the rest of the
system continues to operate normally. CASP uses existing
on-chip DFT and test compression features that are used for
production test.

The CASP concept has been demonstrated successfully
using the OpenSPARC T1 processor. To support CASP, a
CASP test controller and an on-chip buffer to store a scan test
pattern and its corresponding expected response and mask
were implemented. Architectural support necessary for CASP
1) before a test, such as stalling and draining the pipeline,
disabling communication with core under test, saving critical
states and invalidating L1 data cache, and 2) after a test, such
as restoring critical states, enabling communication and
restarting the pipeline, was built into OpenSPARC T1
processor. This was done by either reusing existing support or
by modifying it for the purposes of CASP. All features were
incorporated by adding or modifying approximately 8,000
lines of Verilog code out of the hundreds of thousands of
lines in the original design. Most of the modification did not
require major changes to the normal operation of the chip,
which simplified the verification task. The functionality of
CASP was verified by arbitrarily selecting a core for self-test
during regression verification runs, applying tests to the
selected core while the regression continued, resuming

normal operation of the core under test, and matching final
results after the regression tests completed.

VI.FUTURE OPENSPARC RESEARCH POSSIBILITIES

In addition to the specific examples of ongoing research
described in the previous section, there is a vast range of
research topics where OpenSPARC could potentially be used.
This section briefly describes some of the topics in the area
of hardware reliability and silicon error management that are
of interest to the research community in academia as well as
the industry.

1) Taking advantage of CMT nature of processors for
error detection and recovery solutions. The trend of
designing multiple cores and threads on a single die has
opened up possibilities of using some of these resources for
error detection and recovery. The classical solution of
designing in redundant hardware for reliability can now be
turned around to explore how multiple instances of hardware
already present on a chip can be reused for making hardware
reliable. Using cores as spare cores, using dedicated threads
for duplicating execution, and using spare threads for error
management functions, are examples of the rich research
topics.

2) Understanding errors in the context of micro-
architectural features specific to CMT microprocessors. The
trend toward multi-core, multi-threaded processors, has given
rise to new architectural innovations such as automatic thread
scheduling, thread arbitration, scout threading, transactional
memory in hardware, etc. OpenSPARC provides and
excellent base for studying the behavior of errors in the
presence of these CMT architectural features.

3) Validating the efficiency of any error management
solution. One of the main categories of research in hardware
reliability continues to be techniques to detect and recover
from errors. Since OpenSPARC represents a state-of-the-art
real microprocessor design, it is an excellent vehicle to
demonstrate the effectiveness of any error management
solution.

4) Studying the impact of reliability solutions on
performance. One of the questions that often arises is the
impact of the reliability solutions on area, power and
performance. Area and power impacts are relatively easy to
estimate, but performance degradation is much more difficult
to estimate since it requires actual simulation of traces and
some performance modeling. OpenSPARC comes with a
suite of performance modeling tools, which makes it is very
easy to estimate the impact of error handling solutions on
performance.

5) Software and firmware solutions for hardware
reliability. Most current research in the area of hardware
reliability, focuses on solutions in either the hardware domain
or the software domain. One reason for this approach is that
there is no easy experimental setup for demonstrating a
solution that spans the entire stack. OpenSPARC with its
access to RTL source code, hypervisor code and FPGA
implementation makes it possible to create an experimental
setup where all hardware and software aspects can be studied
and solutions validated.

6) Evaluate the impact on local error detection and
correction logic on chip level failure rates. The OpenSPARC
design has built in several error detectors that cover various
portions of the chip as described in Section 3. These error
detectors can be selectively disabled. The impact of
individual detectors on chip level failure rates, especially at
application level, can be studied for a variety of fault models.

VII.CONCLUSIONS

OpenSPARC is an open source community based around
UltraSPARCTM T1 and T2 CMT processors. In this paper we
have described the rich experimental infrastructure available
in the OpenSPARC platform - micro-architecture
specifications, Verilog RTL code, suite of RTL and
architectural simulations and test benches, FPGA
implementations, reference boards, hypervisor source code
and multiple operating system ports. This rich infrastructure
and error management support inherent in the T2 architecture
make OpenSPARC the most practical, real and versatile
platform for research in reliable computing. Several
Universities are already using OpenSPARC in successful
research projects and there is great potential for hardware
reliability research by the academic community using
OpenSPARC.

ACKNOWLEDGMENT

The authors acknowledge all the University students who
contributed to and are currently involved in OpenSPARC
based research described in this paper.

REFERENCES

[1] “OpenSPARC: World's First Free 64-bit Microprocessors”,
http://www.opensparc.net.

[2] M. Horowitz and W. Dally, “How scaling will change processor
architecture,” IEEE International Solid-State Circuits Conf. (ISSCC)
Dig. Tech Papers, Feb. 2004.

[3] A. S. Leon, et al., “A Power-Efficient High Throughput 32-Thread
SPARC Processor,” IEEE Journal of Solid-State Circuits, Vol. 42, No. 1,
January 2007.

[4] A. S. Leon et al., “The UltraSPARCTM T1 processor: CMT reliability,”
Proc. IEEE Custom Integrated Circuits Conf., Sep. 2006, pp. 555–562.

[5] M. Shah, et al, “UltraSPARCTM T2: A Highly-Threaded, Power-Efficient,
SPARC SOC”, IEEE Asian. Solid-State Circuits Conf, Nov. 2007.

[6] U. G. Nawathe, et al.. “An 8-Core 64 Thread 64b Power-Efficient
SPARC SoC,” IEEE International Solid-State Cir(ISSCC), Dig. Tech
Papers, Feb. 2007, pp. 108-110.

[7] G. Grohoski, “Niagara-2: A Highly Threaded Server-on-a-Chip,”18th
Hot Chips Symposium, Aug., 2006.

[8] R. McGowen et al., “Power and temperature control on a 90-nm Itanium
family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–
237, Jan. 2006.

[9] T. Takayanagi et al., “A dual-core 64-bit UltraSPARCTM microprocessor
for dense server applications,” IEEE J. Solid-State Circuits, vol. 40, no.
1, pp. 7–18, Jan. 2005.

[10] J. Srinivasan, et al., “The Case for Lifetime Reliability-Aware
Microprocessors”, International Symposium on Computer
Architecture, June 2004, pp. 276-287.

[11] J.C. Smolens, et al., “Fingerprinting: Bounding soft-error detection
latency and bandwidth”, IEEE Micro, vol 24, no. 6, Nov-Dec 2004, pp
22-29.

[12] J.C. Smolens, et al., “Detecting Emerging Wearout Faults”, Third IEEE
Workshop on Silicon Errors in Logic – System Effects (SELSE 3), April
2007.

[13] J.C. Smolens, “Fingerprinting: hash-based error detection in
microprocessors”, Ph.D. Thesis, Carnegie Mellon University, Pittsburg,
PA, 2007.

[14] J. Srinivasan, et al., “Lifetime Reliability: Towards and Architectural
Solution”, IEEE Micro 25(30, 2005.

[15] X. Li, et al., “SoftArch: and architectural level tool for modeling and
analyzing soft errrors”, Proc, International Conference on Dependable
Systems and Networks, pp. 496-505, July 2005.

[16] M. Li, et al., “Understanding the Propagation of Hard Errors to Software
and Implications for Resilient System Design”, to appear in
Architectural Support for Programming Langauages and Operating
Systems, 2008.

[17] R. Teodorescu, et al., “VARIUS: A Model of Parameter Variation and
Resulting Timing Errors for Microarchitects”, IEEE Trans. On
Semiconductor Manufacturing, February 2008.

[18] S. Sarangi, et al., “A Model for Timing Errors in Processors with
Parameter Variation”, Proc. Of 8th International Symposium on Quality
Electronic Design (ISQED), March 2007.

[19] Y. Li, et al., “CASP: Concurrent Autonomous Chip Self-test Using
Stored Patterns”, Proc. of Design & Test in Europe, February 2008.

http://www.opensparc.net/

	I.INTRODUCTION
	II.OpenSPARC Architecture
	III.Reliability in the OpenSPARC Processors
	IV.What is Available in OpenSPARC for Experimentation
	A.Chip Design and Verification
	B.Architecture and Performance Modeling
	C.Tools for Tuning and Debug
	D.Tools for Software Development

	V.Current University Research in Hardware Reliability
	A.Carnegie Mellon University
	B.University of Illinois at Urbana-Champaign
	C.Stanford University

	VI.Future OpenSPARC Research Possibilities
	VII.Conclusions

