
In the Proceedings of the International Symposium on Computer Architecture(ISCA’08), June 2008.

Online Estimation of Architectural Vulnerability Factor for Soft Errors ∗

Xiaodong Li†, Sarita V. Adve†, Pradip Bose‡, Jude A. Rivers‡
†University of Illinois at Urbana-Champaign ‡IBM T.J. Watson Research Center

{xli3,sadve}@uiuc.edu {pbose,jarivers}@us.ibm.com

Abstract

As CMOS technology scales and more transistors are
packed on to the same chip, soft error reliability has be-
come an increasingly important design issue for proces-
sors. Prior research has shown that there is significant
architecture-level masking, and many soft error solutions
take advantage of this effect. Prior work has also shown
that the degree of such masking can vary significantly
across workloads and between individual workload phases,
motivating dynamic adaptation of reliability solutions for
optimal cost and benefit. For such adaptation, it is impor-
tant to be able to accurately estimate the amount of masking
or the architecture vulnerability factor (AVF) online, while
the program is running. Unfortunately, existing solutions
for estimating AVF are often based on offline simulators and
hard to implement in real processors.

This paper proposes a novel way of estimating AVF on-
line, using simple modifications to the processor. The esti-
mation method applies to both logic and storage structures
on the processor. Compared to previous methods for esti-
mating AVF, our method does not require any offline sim-
ulation or calibration for different workloads. We tested
our method with a widely used simulator from industry, for
four processor structures and for 100 to 200 intervals of
each of eleven SPEC benchmarks. The results show that
our method provides acceptably accurate AVF estimates at
runtime. The absolute error rarely exceeds 0.08 across all
application intervals for all structures, and the mean abso-
lute error for a given application and structure combination
is always within 0.05.

∗This work is supported in part by an IBM faculty partnership award,
the Gigascale Systems Research Center (funded under FCRP, an SRC
program), the National Science Foundation under Grant NSF CCF 05-
41383, an OpenSPARC Center of Excellence at the University of Illinois
at Urbana-Champaign supported by Sun Microsystems, and an equipment
donation from AMD.

1 Introduction

Soft errors (or single event upsets or transient errors)
caused by alpha particles from packaging materials or high
energy particle strikes from cosmic rays can flip bits in stor-
age cells or cause logic elements to generate the wrong
result. Such errors have become a major challenge to
processor design. Previous research shows that soft er-
ror rate (SER) per chip is growing substantially, mainly
due to the fast growth of the number of transistors on the
chip [3, 11, 15].

If a particle strike causes a bit to flip or a piece of logic to
generate the wrong result, we refer to it as a raw soft error
event. Fortunately, not all raw soft errors cause the proces-
sor to fail. In a given cycle, only a fraction of the bits in
a processor storage structure and some of the logic struc-
tures will affect the final program output. A raw error event
that does not affect these critical bits or logic structures has
no adverse effect on the program outcome and is said to be
masked. For example, a soft error in the branch prediction
unit or in an idle functional unit will not cause the program
to fail. Research has shown that there is a large masking
effect at the architecture level [1, 4, 10, 18, 20].

Mukherjee et al. [10] introduced the term architectural
vulnerability factor (AVF) to quantify the architectural
masking of raw soft errors in a processor structure. The
AVF of a structure is effectively the probability that a visi-
ble error (failure) will occur, given a raw error event in the
structure [10]. The AVF can be calculated as the percentage
of time the structure contains Architecturally Correct Exe-
cution (ACE) bits (i.e., the bits that affect the final program
output). Thus, for a storage cell, the AVF is the percentage
of cycles that this cell contains ACE bits. For a logic struc-
ture, the AVF is the percentage of cycles that it processes
ACE bits or instructions.

For a large class of systems and workloads, including
those studied here, the AVF of a structure directly deter-
mines its mean time to failure (MTTF) [5] – the smaller the
AVF, the larger the MTTF and vice versa. It is therefore im-
portant to accurately estimate the AVF in the design stage
to meet the reliability goal of the system. Many soft er-

1

ror protection schemes have significant space, performance,
and/or energy overheads; e.g., ECC, redundant units, etc.
Designing a processor without accurate knowledge of the
AVF risks over- or under-design. An AVF-oblivious design
must consider the worst case, and so could incur unneces-
sary overhead. Conversely, a design that under-estimates
the AVF would not meet the desired reliability goal.

Recently, there has been significant work motivating the
need to estimate AVF at runtime as well. Studies have
shown significant variation in the AVF value across differ-
ent applications and within different phases of the same ap-
plication [6, 17]. Thus, depending on the workload, the pro-
cessor may be more or less vulnerable at different times.
This observation creates new opportunities to reduce the
soft error protection overhead while meeting the MTTF
goal. If we are able to estimate AVF in real-time accurately,
we can adjust the protection scheme based on the current
AVF value. We can have more protection during highly
vulnerable periods and less protection during less vulner-
able periods, minimizing performance and/or energy over-
head. For example, Soundararajan et al. [16] propose to use
the AVF input to control instruction throttling and selective
redundancy schemes. In this case, a real-time online AVF
estimation is a must since a slow offline method will not be
able to give timely input to the control logic.

There is some previous work that provides online AVF
estimation; however, it is either dependent on extensive of-
fline workload analysis [17] or targeted to a single struc-
ture [16] (see Section 2). In general, estimating AVF online
is a challenging task since the complex computation used
in offline analysis is not feasible in real-time. The AVF for
many structures depends on many factors that are hard to
measure and observe. For example, the AVF of the floating
point unit depends not only on its utilization, but also on
variables such as the percentage of dead values and specu-
lative instructions. For storage structures, AVF estimation
is even more difficult. It may be intuitive to think that the
number of reads/writes to a storage structure may be cor-
related with the AVF of this structure. However, it is easy
to construct two read/write sequences that have the same
number of reads and writes, but very different AVF values.

In this paper, we describe a general online method to es-
timate AVF for a variety of structures (including logic and
storage structures) without need for extensive offline work-
load analysis. Our approach is motivated by offline (com-
plex) AVF estimation approaches. Specifically, a common
method for offline estimation is to inject an error in a low-
level simulator and determine whether it results in program
failure. Many such injections are performed, and the AVF
is calculated as the fraction of such injections that lead to
failure. Our online estimation method effectively seeks to
perform error injection while the program is running in pro-
duction mode and uses the program execution to determine

whether the error will result in failure. Of course, we cannot
actually inject an error into a production run. We therefore
introduce some additional error bits through the processor
pipeline that can emulate the generation and propagation of
an error.

To estimate the AVF of a structure, we emulate the in-
jection of an error in the structure by setting its error bit
to 1. An instruction touching this structure then propagates
the injected error to its destination and so on. In this way,
an error is propagated by the executing program. Our al-
gorithm waits a fixed number of cycles to determine if the
error could (potentially) result in program failure. Multiple
such injections are done and as with offline error injection,
the fraction that are determined to potentially result in fail-
ure provide an estimate of the AVF of the structure.

Our method depends on two key parameters to get an
accurate estimate of AVF: (1) how many times to inject an
error, and (2) after injecting an error, how long to wait to
see if the error will cause a program failure. Setting these
parameters too high can result in an estimation procedure
that lasts too long and does not adequately track the AVF
changes in the program. Setting them too low can result
in incorrect estimates. We use analytical and experimental
methods to determine these two parameters.

To evaluate our method, we implement it in a simula-
tor and perform experiments to estimate the AVF for both
logic and storage structures (integer ALU, FPU, instruction
queue, and register file) for 100 to 200 intervals in each of
eleven SPEC benchmarks. In order to validate our results,
we compare against SoftArch, which is a more detailed (but
complex) offline AVF estimation method (see Section 2).
Our results show that our method generates very similar
results to SoftArch. The absolute difference in AVF esti-
mated by the two methods rarely exceeds 0.08 across all
application intervals and structures studied. The mean ab-
solute difference is less than 0.05 for any given application
and structure. Further, we also compare an intuitive and
simple AVF estimation method that uses the utilization of
logic structures as a proxy for their AVF (an analogous ex-
tension of such a method for storage structures is not clear).
We show that compared to our method, this simple method
shows significant inaccuracies relative to SoftArch, provid-
ing evidence for the need for the hardware support required
by our method. Overall, our results show that our novel
method for online estimation of AVF is both accurate and
robust in a variety of situations.

2 Related work

There have been several studies on estimating the
AVF [10, 6, 19, 17, 16]. However, most studies esti-
mate AVF using offline analysis with complex simula-
tors [10, 6, 19]. This offline estimation is a complex pro-

cess, requiring many resources to track values and instruc-
tions as they travel through a processor. Normally only a
limited number of instructions can be analyzed in a rea-
sonable amount of time. These methods are therefore not
suitable for online real-time AVF estimation.

There has been some work on estimating the AVF in real
time [16, 17]. Walcott et al. [17] apply statistical analy-
sis using a detailed simulator to analyze the AVF behav-
ior. Then they use regression to explore the relationship be-
tween AVF and various micro-architecture level variables
such as structure occupancy, number of instructions exe-
cuted, etc. After running the regression offline for certain
workloads, the correlation coefficients between AVF and
each micro-architecture variable are established. Since the
micro-architecture variables are observable, the AVF value
can be estimated through them. This method can potentially
be implemented to estimate the AVF online; however, it re-
quires heavy offline simulation and calibration for different
workloads. It is not clear that the parameters calibrated for
one set of workloads will give accurate estimation for an-
other set.

Soundararajan et al. [16] propose a method to estimate
AVF for the reorder buffer (ROB) in the processor. This
method determines the AVF by estimating the occupancy
of the instruction queue. The occupancy of the instruction
queue is in turn estimated by counting the number of in-
structions that are dispatched or retired. This method can
be implemented online, but is limited to a single structure.
For example, it is hard to extend the same method to esti-
mate the AVF for the register file.

There have been at least two major works that use bits
similar to our error bits, but for different purposes. First,
Weaver et al. [20] proposed the π bit to address false de-
tected errors. Every instruction and register entry is asso-
ciated with a single π bit. When an error is detected (e.g.,
via parity), the affected instruction’s π bit is set by the in-
struction queue and the instruction is allowed to progress
down the pipeline. When the affected instruction reaches
the commit point, if it is determined to contribute to correct
program outcome, a machine check error is raised; other-
wise the set π bit is ignored. Second, the poison bit [12]
and the analogous NaT bit of the Itanium architecture [14]
are used to track deferred speculative exceptions. Our use
of the error bits is different – we use them to estimate the
AVF due to soft errors. Nevertheless, the hardware support
required for all of these techniques is likely to be similar.

Finally, we use the offline estimation technique of Soft-
Arch to provide the reference AVF used to validate our on-
line estimator [6]. SoftArch uses simple probability theory
to model the error generation and propagation process in
a processor. It keeps track of the error probability of the
different values in the processor. Integrated with a pro-
gram timing simulator, SoftArch also identifies which val-

ues could affect program outcome and when that might hap-
pen. Using the error probability and the timing information,
SoftArch is able to determine the MTTF and the AVF value
for a workload. Our method differs from SoftArch in that
we estimate the AVF online in hardware while the program
is running. Instead of using complex probability calcula-
tions and detailed error tracking that are suited for offline
analysis, we use a simple mechanism that can be efficiently
realized in hardware. Whereas SoftArch (probabilistically)
tracks every raw error that could be generated in the pro-
cessor, our method takes an online statistical fault injection
based approach to estimate the AVF in real-time.

3 AVF Estimation Algorithm

This section describes our online AVF estimation algo-
rithm. We first give an overview of the algorithm and then
describe the details, including the hardware support needed,
overhead, and limitations.

3.1 Overview of the Algorithm

The main idea of the algorithm is to associate error bits
with structures, inject an error by setting an error bit to 1,
use the program execution to propagate the error, determine
if the error (potentially) causes failure, and repeat another
injection. The percentage of injections that cause failure
is the estimated AVF. We first illustrate the working of the
algorithm with an example small program segment below.

1. r1 + r2 = r3
2. r1 - r2 = r4
3. r2 + r4 = r3

...
4. r3 + r4 = r5
5. store r5 to address r4

...
6. load r5 from address r4

...
7. r5 + r6 = r7
8. Branch if r7 = 0

First, let us assume that we want to measure the AVF
of the register file. Suppose at some cycle after completing
line 1 but before executing line 3, we inject an error in regis-
ter r3 by setting its error bit to 1. When line 3 is executed,
the value of r3 is overwritten. Thus, its error bit is over-
written as well by an “or” of r2’s and r4’s error bits. Since
neither of those source registers has an error, r3 no longer
has an error, and so the injected error bit has disappeared.
After waiting for a pre-determined number of cycles, say
M , we see no processor failure. This example in particu-
lar shows how our scheme correctly handles dead values.

Next, assume that at some cycle before executing line 4, we
inject an error into r4. This error bit will propagate to the
result register r5. Next we see a store writing an erroneous
value (r5). As discussed later, we assume errors in retiring
stores can cause program failure; therefore, when that store
retires, we update a failure counter. So far, we have injected
two errors and one of them causes program failure. If we
calculate AVF at this time, it would be 50%.

Next, let us examine how our scheme measures the AVF
for a functional unit like the integer ALU. Suppose at the
cycle when the load instruction at line 6 is executed, we
inject an error into the ALU by setting its error bit. Since
the ALU is not used during that cycle, the error bit will not
propagate to other structures. Thus, the error is masked.
Next, assume we inject an error into the ALU at the cycle
when line 7 is executed. The ALU is used during the cycle
to calculate r7. Thus, by our approach, the injected error
propagates into r7. Now r7 has its error bit set to 1 which
later propagates to the branch instruction. When instruc-
tion 8 is executed, we note that it is an erroneous branch.
As discussed next, we assume erroneous branches can po-
tentially cause program failure and update a failure counter
when this branch hits retirement.

Our algorithm tracks only one error at a time; inject-
ing multiple errors simultaneously will make the algorithm
too complex for at least two reasons. First, different errors
could merge and this could obscure the true nature of the
structure’s vulnerability information. For example, when
two values x1, x2 are added up together, two separate errors
in x1 and in x2 could combine into one new error and the
original error information is lost. Second, one error could
propagate into several values and they might all lead to pro-
gram failures. We should count them as just one failure
since they are all caused by the same error source. Track-
ing such information requires complex hardware and logic.
Thus, we only inject one error at a time and clear all current
errors before injecting the next error.

The full algorithm is summarized as Algorithm 1 and
subsequent sections elaborate on the details. We first dis-
cuss the cases where we assume the injected error results
in program error. Then we discuss the two predetermined
variables N and M that are used to control how many times
to inject errors and how long to wait after each error injec-
tion (to determine potential failure) respectively. We then
discuss the hardware support required and the other over-
heads, and finally the limitations of our method.

3.2 Determining Potential Failure

In reality, an error causes program failure only if it prop-
agates to the program output. Unfortunately, we cannot per-
form this ideal assessment of failure for two reasons. First,
waiting for propagation to the output could take too long

Algorithm 1 Algorithm to estimate AVF for a structure
1: Set the counters injectionCount = 0 and

failureCount = 0
2: while injectionCount < N (N is a predetermined

threshold) do
3: Inject an error into the structure by setting its error

bit to be 1. For a storage structure that contains many
entries, randomly choose one to inject an error.

4: For the next M cycles (M is predetermined), prop-
agate the error bits according to the execution. If a
bit propagates to certain predefined failure points, set
the processor failure bit.

5: If the processor failure bit is set, failureCount =
failureCount + 1.

6: Clear all error bits in the processor.
7: injectionCount = injectionCount + 1.
8: end while
9: AVF = failureCount

injectionCount

for our technique. That is, it would limit the number of
error injections we could monitor in a reasonable amount
of time. Second, since our method does not disturb the ac-
tual program execution, any changes that would occur in the
control flow of the program due to the injected errors are not
seen. For these reasons, we conservatively consider an error
to potentially cause failure if it propagates to the following
points: (1) an output or store instruction retires with an error
bit set in the retirement buffer entry (propagating to output
requires propagating to a store), (2) a load instruction retires
with an error bit set (an erroneous load could cause a visible
failure), and (3) a control flow instruction retires with an er-
ror bit set (it could lead to an unmodeled change in program
flow causing failure that would not otherwise be detected).
Note that waiting until retirement to flag a failure ensures
that misspeculated instructions do not flag failures.

3.3 Determining N – the number of error
injection samples needed

In this section, we show that Algorithm 1 gives an unbi-
ased estimation of the AVF and, more importantly, we de-
rive an equation to determine the number of samples needed
to get an accurate estimation.
Algorithm 1 gives an unbiased estimator.

An error injected in a structure is either masked or not
masked with probability AVF and 1-AVF respectively. We
introduce a random variable X to model this process: X =
1 if the error is not masked and X = 0 if the error is masked.
X has the following probability mass function:

Pr(X = 1) = AV F, Pr(X = 0) = 1 − AV F

Figure 1. The number of samples N needed
for different values of AVF and estimation
precision of σX̄ .

Our algorithm seeks to estimate AVF which is the expec-
tation of X or E(X). It does this by determining the out-
come of N error injections or by generating N samples of
X , denoted X1, X2, ..., XN . The algorithm estimates AVF
as the mean of these samples denoted X̄ = X1+X2+...+XN

N
.

If the N samples are independent and identically distributed
(i.i.d.), then it can be shown using simple probability theory
that X̄ is an unbiased estimator for E(X) since E(X̄) =
E(X) [13].

Independence of the samples can be ensured using ran-
dom sampling; i.e., by using a random number generator to
determine the error injection time. Since a random num-
ber generator is complex to implement in hardware, in our
experiments, we injected errors at fixed length intervals.
Although we expect that small time-scale variations in the
workload behavior will effectively introduce enough ran-
domization, this is an approximation and potential source of
inaccuracy in our estimation. In the following, we assume
that the samples are identically distributed for simplicity,
but relax this assumption at the end of the section.
Determining N for an accurate estimation.

To ensure that X̄ is an accurate enough estimator of AVF,
we analyze and bound the standard deviation of X̄, denoted
σX̄ , as follows. It is well-known that the standard deviation
σX̄ = σX√

N
if all Xi are i.i.d. [13]. Thus, we can fix the

number of samples, N , depending on the desired value of
σX̄ (i.e., the desired accuracy of the AVF estimate). Based
on the above equation, we have

N =
σ2

X

σ2
X̄

(1)

From the distribution of X , we know that σX =
√

AV F (1 − AV F), where AVF ∈ [0, 1]. Thus, we can
plot the desired value of N as a function of the AVF, given a
desired precision (standard deviation) of the estimator. Fig-

ure 1 shows such plots for different values of σX̄ . In prac-
tice, the AVF value is unknown before the estimation, so
we cannot directly use the plots to determine N . Instead,
we note that the maximum possible value of σX is 0.5 cor-
responding to an AVF of 0.5. We substitute this value in
equation 1 to derive a conservative upper bound for N . For
example, for the estimation standard deviation to be less
than 0.01, we need N = 0.52/0.012 = 2500 samples. Sim-
ilarly, for σX̄ < 0.02, we need 0.52/0.022 = 625 samples.
In general, N can be chosen based on the needed precision.
In this work, we choose N = 1000 since we empirically
find it to be a good balance between the estimation preci-
sion and the simulation time.
Storage structures with multiple entries.

So far, our analysis of the AVF estimation of a compo-
nent implicitly treats the component as a single entity. For
a storage structure that contains many entries, we can view
each entry as a (sub-)component and sample each entry. As-
suming the structure has K entries, we define one random
variable for each of the K entries and denote them as X i, i

in 1, 2,...K. The AVF of the structure is
∑

K

i=1
E(Xi)

K
.

Suppose we sample the entire structure N times. Ideally,
for each sample, we would like to choose the entry to sam-
ple using a random number generator; however, that would
be too expensive in hardware. As an approximation, we
choose to sample the different entries in a round-robin fash-
ion, resulting in N/K samples for each entry or each X i.
Our AVF estimator, X̄, is the average of these N samples.
This is an unbiased estimator for the AVF of the structure
since E(X̄) is the AVF.

Assuming the samples are independent and that all sam-
ples for an entry are i.i.d., we can show that [13]

σX̄ =

√

σ2

X1
+σ2

X2
+..+σ2

XK

N∗K
.

In this formula, if we conservatively assume that all the
σXi are the maximum value of 0.5, it follows that σX̄ <
0.5/

√
N . Thus, even in this case, the bound for N is the

same as for the single structure.
Relaxing the identical distribution assumption.

Above we also assume that all the samples are identically
distributed. However, we know that workload behavior may
change significantly over long intervals of time. If the esti-
mation interval includes such large-scale changes, then we
can think of the interval as consisting of multiple phases
(each with its own AVF) and the AVF for the entire estima-
tion interval to be the average AVF across all the phases.

Now the expectation of our estimation becomes E(X̄) =

E(

∑

N

i=1
Xi

N
) = 1

N

∑N

i=1 E(Xi), where E(Xi) may be dif-
ferent for different i. If our samples are spread evenly over
the entire estimation interval, then it follows that E(X̄) is
the AVF of the entire estimation interval. To achieve even
sampling, we inject a new error every fixed time interval M
over the entire estimation interval.

The standard deviation of the estimation now is σX̄ =
1
N

√

σ2
X1

+ σ2
X2

+ .. + σ2
XN

. σXi
may be different for dif-

ferent i. By conservatively assuming that σXi
takes its max-

imum value, σX̄ < 0.5/
√

N . This is exactly the same equa-
tion as with the i.i.d. assumption.

3.4 Determining M – the interval between
successive error injections

Each time we inject an error, we need to wait to see if it
can cause processor failure. The interval M that we need
to wait is an important parameter in our algorithm. If we
wait too long, it will take a long time for us to have a rea-
sonable estimate for AVF. However, if the wait time is too
short, a potentially unmasked error might not have propa-
gated as a failure yet. Thus, we need to choose M so that it
is large enough that most of the unmasked errors propagate
as a failure (as defined above) during that period.

We empirically determine the appropriate injection in-
terval length M using the error propagation time distribu-
tion in the processor. We inject errors into each structure of
the processor and measure the time it takes for the errors to
propagate to our predefined failure points. Figure 2 shows
the cumulative distribution of these propagation times for
the register file and FXU units for application bzip2.

Depending on the various latency parameters of the mod-
eled processor and the workload characteristics, the distri-
bution curves will change. For example, for the issue queue,
an error injected into one of the entries may, in the case
of a long latency cache miss, remain ”live” for a duration
that is at least as long as the worst-case miss latency in the
system. Different structures may also have different distri-
bution curves. For example, we can see that the register
file and the FXU have different distribution curves in Fig-
ure 2. Thus, the optimal choice of M depends on the struc-
ture, workload, and processor. Estimating the optimal M is
therefore a complex process.

For our simulations, we choose M to be conservative
so that the value covers all the workloads and the struc-
tures we study here, namely register file, instruction queue,
FXU, and FPU. Based on the distributions observed for
these structures, we choose M = 1000. We could have
used a smaller M for some of our structures; however, even
with M = 1000, we need only 1 million cycles to estimate
the AVF (given N = 1000). Thus, for simplicity, we use
M = 1000 for all the structures and workloads we study.
Other structures may require larger values of M .

3.5 Hardware support and overhead

The processor contains storage and logic structures. For
each storage entry such as a register in a register file or an
issue queue entry, an error bit needs to be attached. For the

(a) register file

(b) FXU

Figure 2. The cumulative distribution for the
time taken by an error to propagate to points
of potential failure (defined in Section 3.2) for
bzip2.

bus, one extra line is needed to carry over the error bit when
a value is transferred over the bus. For each logic structure
like the FXU or FPU, an error bit will is required.

The scheme also needs the necessary hardware logic sup-
port to set and clear each error bit. We emulate the injection
of an error to a given structure by setting its error bit to one.
When the structure is used, its error bit needs to be propa-
gated down the pipeline. For example, if the error bit of a
storage cell is set to one, when the value in the cell is read,
the error needs to propagate together with the value. If the
value is overwritten, the error bit needs to be overwritten as
well. If the error bit of a logic structure is set to one and this
structure is active, the error bit will be attached to the output
value. If the structure is idle, the error bit will not propagate
further and is masked. If a logic structure takes more than
one input, such as the ALU, “or” gates are needed to merge
the error bits from each input.

Besides the error bits, the scheme also needs basic hard-
ware counters to track the total number of errors injected
and the number that (potentially) lead to processor failure.

The overhead of the scheme mainly comes from the set-

ting and clearing of the error bits. The error bits require ex-
tra hardware. We need one bit for every 32-or 64-bit value;
hence, the space overhead for storage entries is about 1-3%.
For a logic structure however, we only need one bit for a
given structure. We also need the necessary logic to keep
track of how many failures have occurred and how many
errors have been injected. This can be done using several
basic counters. In addition, we need a counter to keep track
of which storage entry or logic structure to inject next.

During program execution, the error bits propagate to-
gether with the values and should not cause any extra slow-
down for the processor. Once in every M ∗ N instructions
or so, the processor needs to do the accounting and calcu-
late the AVF. Given that this is done typically once every
(several) million instructions, the time overhead should be
negligible.

3.6 Limitations

Our method also has several limitations. A major as-
sumption of our method is that an error in the processor
will propagate and cause program failure in a short period
of time, currently less than several thousand instructions.
Otherwise, the time it takes to estimate AVF will be much
longer since M will need to be set to be a large number.
Since we conservatively assume that values stored in mem-
ory are observable externally and thus can cause program
failure, this assumption appears satisfactory for the struc-
tures we study. However, if we were to set the output in-
structions as failure monitoring points, then we may need
to wait for longer periods, meaning that we may not be able
to sample enough points. The downside of this is that we
have to be very conservative in estimating when an error
leads to failure.

Also, our method only depends on one run of the pro-
gram and we are not able to simulate and track execution
along incorrect paths invoked due to an error. Without this
ability, we are left to defining the points of failure very con-
servatively.

Under the current scheme, we attach one bit for each
value or instruction in the processor. Thus, our error in-
jection granularity is limited to the full value or instruction.
This means that we cannot distinguish between errors in dif-
ferent fields of a structure and cannot track which part of the
instruction has error. This could be addressed by supporting
multiple error bits per value or instruction, allowing errors
to be injected at a finer granularity. Similarly, since we do
not differentiate between bits constituting a given value, we
conservatively assume that the value is wrong once any of
its bits has an error. This prevents us from modeling de-
tailed masking effects like logical masking.

Finally, the goal of this work is to develop an online AVF
estimation algorithm. Our algorithm estimates the AVF for

Technology Parameters
Process technology 90nm
Processor frequency 2.0 GHz

Processor Parameters
Fetch rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store, 1 Branch
Issue queue entries FPU = 20, Load/Store/Integer = 36

Branch = 12
Integer FU latencies 1/4/35 add/multiply/divide (pipelined)
FP FU latencies 5 default, 28 div. (pipelined)
Register file size 80 integer, 72 FP
iTLB/dTLB entries 128/128
Instruction buffer entries 64

Memory Hierarchy Parameters
L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Unified) 1MB, 4-way, 128-byte line

Contentionless Memory Latencies
L1/L2/Memory Latency 1 /20 /165 cycles

Table 1. Parameters for the simulated processor.

the past interval. Many processor adaptive control algo-
rithms need the AVF for the future interval as the input. In
order for our approach to be useful for controlling any pro-
cessor adaptation, we need to integrate our method with an
interval or phase prediction method. There has been much
work on phase prediction. Our work can simply be com-
bined with any phase prediction algorithm. For example,
we could use a simple predictor which always predicts the
next interval’s AVF to be the same as the past interval.

4 Experimental Methodology

To evaluate the accuracy of our AVF estimation method,
we use the Turandot simulator [9]. Turandot was developed
at IBM’s T.J. Watson Research Center and is a trace-driven
performance simulator that models the timing of the var-
ious pipeline stages of a modern out-of-order superscalar
processor in detail [8]. As described in [8], Turandot was
calibrated against a pre-RTL, detailed, latch-accurate pro-
cessor model. Table 1 summarizes the parameters for the
processor we simulate; these were chosen to roughly corre-
spond to the POWER4 microarchitecture [7].

We implemented our AVF estimation algorithm in Tu-
randot as described in Section 3 to estimate the AVF of
the instruction queue (IQ), register file (REG), integer or
fixed point functional units (FXU), and floating point units
(FPU).1

1We were not able to collect data for TLBs since a reasonable M value
required for effectively exercising them is close to 1 million cycles. Thus,
to generate one AVF estimation requires a billion cycles of simulation,
which made it difficult to collect a full set of results.

We evaluated our algorithm with eleven SPEC CPU2000
benchmarks. We used traces from the trace repository gen-
erated using the Aria trace facility in the MET toolkit [8],
using the full reference input set. Sampling was used to
limit the trace length to 100-200 million instructions per
program. The sampled traces have been validated with
the original full traces for accuracy and correct represen-
tation [2].

The value of the parameters M and N depend on the pro-
cessor and compiler and should be carefully chosen. In our
experiments, as we have mentioned in previous sections, we
choose M = N = 1, 000. Thus, we estimate an AVF value
at the granularity of every M ∗ N = 1 million cycles of an
application. We refer to this as the estimation interval be-
low. This gives us 100-200 AVF estimates (one for each
distinct 1M cycle interval) for each application and each
processor structure.

To validate the accuracy of our AVF estimates, we com-
pare against the AVF reported by the SoftArch method [6].
As mentioned, SoftArch is a detailed soft error model that
estimates the AVF offline with a lot of analysis. We use
SoftArch since it is the best AVF estimation we have access
to.

Additionally, to justify the full complexity of our
method, we also compared its accuracy to that of a sim-
pler, intuitive method. Specifically, for logic structures, it is
intuitive to consider utilization as an estimation for the AVF
(the higher the utilization, the higher the vulnerability to
soft errors). The utilization of a logic structure can be eas-
ily estimated in hardware by counting the number of cycles
it is busy out of all cycles. It is natural to use the utiliza-
tion as a proxy for AVF since errors in the structure will be
masked if the structure is idle and errors may not be masked
when the structure is busy. An analogous concept is harder
to extend to storage structures. We are not aware of any
other general, workload-independent algorithm for online
estimation of AVF of storage structures. Thus, in this study,
we use a simple alternative (utilization-based) method only
to estimate AVF for logic structures.

5 Results

Figures 3(a), (b), (c), and (d) show aggregate statistics
to demonstrate the accuracy of our AVF estimation algo-
rithm relative to SoftArch for the instruction queue, register
file, FXU, and FPU respectively. The FXU and FPU fig-
ures also show the accuracy of the simple utilization-based
estimation method relative to SoftArch (right bar for each
application).

Below, by absolute error of an estimation method for
a given application interval that contains 1 million cy-
cles, we refer to the absolute difference between the
AVFs reported by that method and by SoftArch. By

relative error of an estimation method, we refer to
|Estimated AV F − SoftArchAV F |

SoftArch AV F
∗100. Also, we often refer

to the SoftArch AVF as the real AVF.
The charts on the left side of Figure 3 give three statis-

tics for the absolute errors. For each bar, the lowest (shaded)
stack gives the mean absolute error (referred to as Mean) for
the corresponding estimation method and application (aver-
aged across the different 1M cycle estimation intervals for
that application). The full height of the bar is the maximum
absolute error, ignoring the top four errors to exclude unrep-
resentative outliers (referred to as Max). The middle stack
is the standard deviation of the absolute error (referred to as
Standard Deviation).

Since AVF values can range only from 0 to 1, it is most
meaningful to compare the absolute errors. Small absolute
errors may be acceptable even if the relative error is large;
e.g., an estimate of AVF=0.12 for a real AVF of 0.1 reflects a
20% relative error; however, it is unclear if this difference of
0.02 absolute error is practically significant. Nevertheless,
the charts on the right side of Figure 3 provide the relative
errors for reference.

For a more detailed look, we take two applications as
examples and plot AVF values for them for each 1M cycle
estimation interval for each structure in Figure 4. For each
application, we show the AVF value calculated by SoftArch
and the AVF value estimated by our method. For both the
FPU and FXU, we also show the AVF calculated by the
utilization-based method.

We make the following observations from the figures.
Absolute errors.
Comparing absolute errors (left charts in Figure 3), we

find that our method shows low mean absolute errors – for
all but 3 cases, the mean is less than 0.04 across all four
structures and eleven applications. Even the Max absolute
error for our method is less than 0.08 for all the structures
and applications. The standard deviation for the absolute
error is less than 0.05 for all cases.

In contrast, the utilization-based method has signifi-
cantly larger mean absolute error in several cases. For ex-
ample, for the FXU, the mean absolute error is over 0.16 for
perlbmk and almost 0.1 for mesa and wupwise. The maxi-
mum errors are even higher.

In all cases, our estimation method shows better or
almost the same absolute error as the utilization-based
method. The main reason that our method shows lower er-
ror is that it is able to account for more sources of mask-
ing (e.g., masking due to dead values and instructions) than
the utilization-based method. In four cases, the utilization-
based method shows slightly lower mean absolute error be-
cause our method does make some statistical errors. Specif-
ically, we use only a finite number of samples. Further, we
assume that the samples are independent and, for the case
of structures with multiple entries, an entry in a structure is

������
������
������

������
������
������

������
������
������
��� ������������������������������

������
������
������

������������ 	�		�	
	�		�	
	�	

�

�

�

�

�

������
������
���

������
������

��
��
������
������ ������������������������������

�������������������������

���������������
������
���

���������������
������
��� ��������������������

������
������

�������
�

0.10

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f

A
V

F

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

������
������
������
������

�������������������������

��������������������
��������������������
��������������������

������
������
������
������

 � �
 � �
 � �
 �

!�!!�!
!�!!�!
"�""�"
"�""�"

#�##�#
#�##�#
$�$$�$
$�$$�$ %�%%�%

%�%
&�&&�&
&�&

'�'�''�'�''�'�''�'�'
(�((�(
(�((�()�)�))�)�))�)�))�)�))�)�))�)�))�)�)

*�**�*
*�**�*
*�**�*

+�+�++�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,

-�-�--�-�--�-�--�-�-
.�.�..�.�..�.�..�.�.

/�//�/0
0

120%

100%

80%

60%

40%

20%

0

 R
el

at
iv

e
E

rr
or

 o
f

A
V

F

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(a) Instruction queue

1�11�1
1�11�1
1�11�1
1�1

2�22�2
2�22�2
2�22�2
2�2

3�33�34�44�4 5�5�55�5�55�5�56�66�6
6�6

7�77�7
7�77�7
8�88�8
8�8

9�99�9
9�99�9
9�9

:�::�:
:�::�:
:�:

;�;;�;
;�;;�;
;�;

<�<<�<
<�<<�<
<�<

=�==�=
=�=
>�>>�>
>�>

?�?�??�?�??�?�?
@�@�@@�@�@@�@�@ A�A�AA�A�AA�A�AA�A�AA�A�A

B�BB�B
B�BB�B

C�C�CC�C�CC�C�CC�C�CC�C�CC�C�CC�C�CC�C�CC�C�C

D�DD�D
D�DD�D
D�DD�D
D�DD�D
D�D

E�E�EE�E�EE�E�EE�E�EE�E�E

F�FF�F
F�FF�F
F�F

G�GG�G
G�G
HH

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f

A
V

F

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

I�II�I
I�II�I
J�JJ�J
J�JJ�J

K�K�KK�K�KK�K�KK�K�K
L�L�LL�L�LL�L�L M�M�MM�M�MM�M�MM�M�M

N�N�NN�N�NN�N�N
O�OO�OP�PP�P

Q�QQ�Q
Q�QQ�Q
R�RR�R
R�RR�R

S�SS�ST�TT�T U�UU�UV�VV�V W�W�WW�W�WW�W�W
X�XX�X Y�Y�YY�Y�YY�Y�Y

Z�ZZ�Z
[�[�[[�[�[[�[�[[�[�[
\�\�\\�\�\\�\�\\�\�\

]�]�]]�]�]]�]�]]�]�]
^�^�^^�^�^^�^�^^�^�^

_�__�_
�
``

120%

100%

80%

60%

40%

20%

0

 R
el

at
iv

e
E

rr
or

 o
f

A
V

F
am

mp
art bz

ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(b) Register file

a�a�aa�a�ab�bb�b
c�c�cc�c�cc�c�c
d�dd�d
d�d

e�e�ef�f�f
g�g�gg�g�gh�h�h

i�i�ii�i�ii�i�ii�i�ii�i�i

j�j�jj�j�jj�j�jj�j�j
k�kk�k
k�k
l�ll�l
l�l

m�m�mm�m�mn�n�n

o�oo�op�pp�p
q�qq�qr�rr�r
s�ss�s
s�ss�s
s�ss�s
s�ss�s
s�s

t�tt�t
t�tt�t
t�tt�t
t�tt�t
t�t

u�uu�uv�vv�v w�wx�x
y�yy�y
y�y
z�zz�z
z�z

{�{{�{
{�{
|�||�|
|�|

}�}}�}~�~~�~

������
������
���

������
������

������������
������
���
������
���

������������
���������������
������
���

������������

��������������������
������
���

������
���
��

0.25

0.2

0.15

0.1

0.05

0

 A
bs

ol
ut

e
E

rr
or

 o
f

A
V

F

O U O U O U O U O U O U O U O U O U O U O U

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

����������
��������������������
��������������������

���������������
��������������������

�������������������������

�������� ������
��������������������
������
������

���

������
������
������
������
������
������
������

����� �
¡�¡�¡¡�¡�¡¡�¡�¡
¢�¢¢�¢
¢�¢
£�£�££�£�£¤�¤¤�¤ ¥�¥

¥�¥
¦�¦¦�¦ §�§�§¨�¨�¨

©�©©�©
©�©©�©
©�©©�©

ª�ªª�ª
ª�ªª�ª
ª�ªª�ª

«�«¬�¬
��®�® ¯�¯¯�¯°�°

±�±²�² ³�³³�³´�´´�´
µ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µ

¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶

·�·¸�¸

¹�¹�¹¹�¹�¹¹�¹�¹¹�¹�¹¹�¹�¹

º�º�ºº�º�ºº�º�ºº�º�ºº�º�º

»�»»�»
»�»
¼¼

600%

500%

400%

300%

200%

100%

0

 R
el

at
iv

e
E

rr
or

 o
f

A
V

F

O U O U O U O U O U O U O U O U O U O U O U

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(c) FXU

½�½�½½�½�½½�½�½
¾�¾¾�¾
¾�¾
¿�¿�¿¿�¿�¿¿�¿�¿¿�¿�¿¿�¿�¿¿�¿�¿

À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À

Á�Á�ÁÁ�Á�ÁÂ�Â�ÂÂ�Â�ÂÃ�Ã�ÃÃ�Ã�ÃÄ�Ä�ÄÄ�Ä�Ä
Å�Å
Æ�Æ�ÆÆ�Æ�ÆÆ�Æ�Æ
Ç�Ç�ÇÇ�Ç�Ç

È�ÈÈ�ÈÉ�ÉÉ�É Ê�Ê
Ê�ÊÊ�Ê
Ê�ÊÊ�Ê
Ê�Ê

Ë�ËË�Ë
Ë�ËË�Ë
Ë�ËË�Ë
Ì�ÌÌ�Ì
Ì�ÌÌ�Ì
Ì�ÌÌ�Ì

Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í

Î�ÎÎ�Î
Î�Î
Ï�ÏÏ�Ï
Ï�Ï Ð�ÐÐ�ÐÑ�ÑÑ�Ñ Ò�Ò

Ò�ÒÒ�Ò
Ò�Ò

Ó�ÓÓ�Ó
Ó�Ó
Ô�ÔÕ�Õ

Ö�ÖÖ�Ö×�× Ø�ØÙ�Ù

Ú�ÚÚ�Ú
Ú�ÚÚ�Ú
Û�ÛÛ�Û
Û�ÛÛ�Û

Ü�ÜÜ�Ü
Ü�ÜÜ�Ü
Ü�Ü

Ý�ÝÝ�Ý
Ý�ÝÝ�Ý
Ý�Ý

Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�Þ

ß�ßß�ß
ß�ßß�ß
à�à�àà�à�àà�à�à
á�áá�á
á�á â�ââ�â

â�â
ã�ãã�ã
ã�ãä�ä�ä
ä�ä�ää�ä�ää�ä�ää�ä�ä

å�åå�å
å�åå�å

æ�ææ�æç
ç

0.12

0.10

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f

A
V

F

O U O U O U O U O U O U O U O U O U O U O U

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

è�è�èè�è�èè�è�è
é�é�éé�é�éé�é�é
ê�ê�êê�ê�êê�ê�êê�ê�êê�ê�êê�ê�êê�ê�êê�ê�ê

ë�ë�ëë�ë�ëë�ë�ëë�ë�ëë�ë�ëë�ë�ëë�ë�ë

ì�ì�ìì�ì�ìì�ì�ì
í�í�íí�í�íí�í�íî�î�îî�î�îî�î�îî�î�îî�î�î

ï�ï�ïï�ï�ïï�ï�ïï�ï�ï

ð�ð�ðð�ð�ðñ�ññ�ñò�ò�òò�ò�òò�ò�ò
ó�óó�ó
ó�ó

ô�ô�ôô�ô�ôô�ô�ôô�ô�ô
õ�õõ�õ
õ�õõ�õ
ö�ö�öö�ö�öö�ö�öö�ö�öö�ö�öö�ö�öö�ö�ö

÷�÷÷�÷
÷�÷÷�÷
÷�÷÷�÷
÷�÷

ø�ø�øø�ø�øø�ø�øø�ø�øø�ø�ø

ù�ùù�ù
ù�ùù�ù
ú�úú�ú
ú�úú�ú
ú�úú�ú
ú�úú�ú

û�ûû�û
û�ûû�û
û�ûû�û
û�û

ü�ü�üü�ü�üü�ü�ü
ý�ý�ýý�ý�ýý�ý�ý

þ�þþ�þÿ�ÿ ������������

������
���
������

������
������

������
��

��

	�		�	
	�	

�

�

�

�������������������������

�������������������������

���
�

300%

250%

200%

150%

100%

50%

0

 R
el

at
iv

e
E

rr
or

 o
f

A
V

F

O U O U O U O U O U O U O U O U O U O U O U

am
mp

art bz
ip2

eq
ua

ke

fac
ere

c

luc
as

mes
a

pe
rlb

mk

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(d) FPU

Figure 3. Error in AVF estimation when compared to the SoftArch reference for (a) instruction queue,
(b) register file, (c) FXU, and (d) FPU. The left charts show absolute error - mean, standard deviation
and maximum - across all estimation intervals of the application. The right charts show relative
error. The errors are shown for AVF estimates using our online method (denoted O) and the simple
utilization-based method (denote U, for parts (c) and (d) only).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
n

Q
ue

ue
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

In
st

ru
ct

io
n

Q
ue

ue
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

instruction queue

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

R
eg

is
te

r
fil

e
A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

R
eg

is
te

r
fil

e
A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

register file

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

F
X

U
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

Utilization based AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

F
X

U
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

Utilization based AVF

FXU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

F
P

U
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

Utilization based AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

F
P

U
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

Utilization based AVF

FPU

Figure 4. AVFs of instruction queue, register file, FXU, and FPU, as reported by SoftArch, our online
method, and the utilization-based method (for FXU and FPU only), for applications mesa (left side)
and ammp (right side). AVFs are reported for 1M cycle intervals.

not randomly selected for fault injection.
Relative errors.
Comparing relative errors (right charts in Figure 3), we

find that in most cases, the mean relative error for our
method is less than 20%, but in some cases, it can be as
high as 65% (for FPU running facerec). The utilization-
based method has a much higher mean relative error in most
cases, up to over 300% for FXU running equake and 130%
for FXU running wupwise.

We examine the cases where our method has a relative
error larger than 20%. We find that in all these cases, the
real AVF is less than 0.2. This small absolute value implies
that even a small absolute error is inflated as a large relative
error. At these small AVF values, the modestly large relative
errors of our method are unlikely to affect design choices,
given that the absolute errors are so small.

Detailed results.
The detailed plots in Figures 4 reveal several interest-

ing observations that are not seen in the aggregate statis-
tics. First, the absolute value of the AVF stays within 0.2
for most of the cases examined here, but it often also goes
as high as 0.5. Our method is able to track this entire range
of AVFs.

Second, many of the applications show significant
changes in the AVF through the course of the execution.
Our method is able to track all such changes very closely.
The utilization-based method also tracks the changes – pe-
riods of high utilization correlate well with periods of high
real AVF; however, often a significant gap remains between
the absolute values of the utilization-based method and the
real AVF.

Overall, these results show that our method is not only
accurate on average, but also robust across a variety of sce-
narios. Further, for structures where a simple utilization-
based method can be constructed, our results show that such
a method has significantly lower fidelity than our method.

Prediction errors.
We have studied the accuracy of our scheme when used

to estimate AVF. The AVF estimation is obtained at the end
of each interval. However, for the AVF value to be useful
for any dynamic control or adaptation scheme, we need to
predict the AVF value for the next interval. Detailed AVF
prediction schemes are beyond the scope of this work. In
this paper, we simply illustrate that with our AVF estima-
tion method and a simple predictor, we can quite effectively
predict the AVF value for the next interval.

Such a simple predictor would work as follows. At the
end of each estimation interval, it predicts the AVF of the
next interval to be equal to the AVF of the past interval
which is estimated using our scheme. The underlying as-
sumption behind this simple prediction is that the AVF be-
havior across consecutive estimation intervals for the same
application is stable or changes very slowly.

In order to evaluate the quality of our AVF prediction,
for each estimation interval, we calculate the absolute error
in the prediction as the absolute value of the difference be-
tween the predicted AVF and the real AVF. Figure 5 reports
this absolute prediction error and the real AVF, averaged
across all intervals for each application.

The results show that the absolute prediction error is
quite small in all cases (less than 0.05 with two exceptions).
The relative prediction error (as a percentage of the real
AVF) is less than 30% of the real AVF with a few excep-
tions when the absolute value of the AVF is small. The
prediction errors arise from two sources. The first is the
predictability of the AVF itself across different intervals of
the application. If the application AVF is unrelated across
different intervals and changes abruptly and frequently, any
predictor will fail to produce reasonable predictions. This
is regardless of the accuracy of the online AVF estimation
method for the current interval. The predictability of the
AVF across different estimation intervals is a topic beyond
the scope of this paper. Based on our observation, however,
the AVF of most applications is stable across consecutive
intervals, although there are a few exceptions where AVF
behavior changes frequently and is harder to predict. The
second source of error in the prediction is the error in our
online AVF estimation method for the current interval. If
the AVF estimation for the current interval has large errors,
then even if the AVF is stable across all intervals, the predic-
tion for the next interval will contain large errors. Overall,
the results show that our estimation scheme combined with
a simple predictor gives reasonable AVF predictions.

6 Conclusion

In this paper, we have proposed and studied a novel tech-
nique to estimate architectural vulnerability factors for soft
errors in real-time. We have described the AVF estimation
algorithm and the simple hardware modifications to the pro-
cessor for effectively estimating the AVF. Our method is
general and applies to both logic and storage structures in a
microprocessor. We tested our method with a widely used
simulator from industry, for four processor structures run-
ning SPEC benchmarks. The results show that our method
provides acceptably accurate run-time AVF estimates un-
der a wide variety of scenarios, compared to a detailed (and
complex) offline AVF estimation tool.

References

[1] E. W. Czeck and D. Siewiorek. Effects of Transient Gate-
level Faults on Program Behavior. In Proc. of the Interna-
tional Symposium on Fault-Tolerant Computing, 1990.

������
������
������
������

������
������
������
������

������
������
���

������
������
���

������
���
��
�
������������ 	�	
	�		�	
	�	

 ���
�
� �� ��

��
��
��

��
��
��
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

������ ������
���
�� �
��
��
��

��
��
��
�

��������� ������ !!
!!
!!

""
""
"
##
##
##
#

$$
$$
$$
$

%%
%%
%%
%%

&&
&&
&&
&

''
'
((
()�))�)
)�))�)
)�))�)
)�)

*�**�*
*�**�*
*�**�*
�

+�++�+
+�++�+
+�++�+
+�++�+

,,
,,
,,
,,

-�--�-.�..�. /�/0 1
11
11
11
1

22
22
22

33
33
33
3

44
44
44
4

55
55
55
55
55
55

66
66
66
66
66
6

778
8
99
99
99
9

::
::
::
:

;;
;;
;;

<<
<<
<<

==
==
==
==
==
==
==
==

>>
>>
>>
>>
>>
>>
>>
>>

?�?@�@ A�AA�A
A�A
BB C�C
C�CC�C
C�CC�C
C�C

D�DD�D
D�DD�D
D�DD�D

E�EE�EF
F
GGH
H
II
I
JJ K
KK
KK
KK

LL
LL
LL
L

MM
MM
MM

NN
NN
NN

OO
OO
O

PP
PP
P

QQ
QQ
Q

RR
RR
R

SS
SS
SS
SS
S

TT
TT
TT
TT
T

U�UU�U
U�UU�U
V�VV�V
V�VV�V
W�WW�W
W�W
XX
X

YYZ
Z

0.4

0.3

0.2

0.1

0

iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u

ammp art bzip2 equake facerec lucas mesa perlbmk sixtrack swim wupwise

Average_AVF_ValueAverage_Prediction_Error

Figure 5. The relative error of the predicted AVF using a simple predictor. The predictor assumes the
AVF of the next interval is equal to that of the previous interval.

[2] V. Iyengar, L. H. Trevillyan, and P. Bose. Representative
Traces for Processor Models with Infinite Cache. In Proc. of
the 2nd Intl. Symp. on High-Perf. Comp. Architecture, 1996.

[3] T. Karnik et al. Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes. IEEE Transac-
tions on Dependable and Secure Computing, 1(2):128–143,
June 2004.

[4] S. Kim and A. K. Somani. Soft Error Sensitivity Charac-
terization for Microprocessor Dependability Enhancement
Strategy. In Proceedings of the International Conference
on Dependable Systems and Networks, 2002.

[5] X. Li, S. Adve, P. Bose, and J. A. Rivers. Architecture-Level
Soft Error Analysis: Examining the Limits of Common As-
sumptions. In Proceedings of the International Conference
on Dependable Systems and Networks, 2007.

[6] X. Li et al. SoftArch: An Architecture-Level Tool for Mod-
eling and Analyzing Soft Errors. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks,
2005.

[7] C. Moore. The POWER4 System Microarchitecture. In Mi-
croprocessor Forum, 2000.

[8] M. Moudgill et al. Environment for PowerPC Microarchi-
tectural Exploration. In IEEE Micro, 1999.

[9] M. Moudgill et al. Validation of Turandot, a Fast Processor
Model for Microarchitecture Evaluation. In International
Performance, Computing and Communication Conference,
1999.

[10] S. Mukherjee et al. A Systematic Methodology to Com-
pute the Architectural Vulnerability Factors for a High-
Performance Microprocessor. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microar-
chitecture, 2003.

[11] H. T. Nguyen and Y. Yagil. A Systematic Approach to SER
Estimation and Solutions. In Proceedings of the 41st IEEE
International Reliability Physics Symposium, 2003.

[12] A. Rogers and K. Li. Software support for speculative loads.
In Proceedings of the 5th International Conference on Archi-
tectural Support For Programming Languages and Operat-
ing Systems, 1992.

[13] S. Ross. A First Course in Probability (Chapter 7). Prentice
Hall, 2001.

[14] H. Sharangpani and K. Arora. Itanium processor microar-
chitecture. IEEE Micro, 20(5), 2000.

[15] P. Shivakumar et al. Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic. In
Proceedings of the International Conference on Dependable
Systems and Networks, 2002.

[16] N. Soundararajan, A. Parashar, and A. Sivasubramaniam.
Mechanisms for bounding vulnerabilities of processor struc-
tures. In Proceedings of the International Symposium on
Computer Architecture, June 2007.

[17] K. R. Walcott, G. Humphreys, and S. Gurumurthi. Dynamic
prediction of architectural vulnerability from microarchitec-
tural state. In Proceedings of the International Symposium
on Computer Architecture, June 2007.

[18] N. Wang et al. Characterizing the Effects of Transient Faults
on a Modern High-Performance Processor Pipeline. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks, 2004.

[19] N. Wang et al. Examining ACE Analysis Reliability Esti-
mates Using Fault Injection. In Proceedings of the Interna-
tional Symposium on Computer Architecture, 2007.

[20] C. Weaver et al. Techniques to Reduce the Soft Error Rate of
a High-Performance Microprocessor. In Proceedings of the
International Symposium on Computer Architecture, 2004.

