
14

Cross-Component Energy Management:
Joint Adaptation of Processor and Memory

XIAODONG LI, RITU GUPTA, SARITA V. ADVE, and YUANYUAN ZHOU

University of Illinois at Urbana-Champaign

Researchers have proposed the use of adaptation to reduce the energy consumption of different

hardware components, such as the processor, memory, disk, and display for general-purpose ap-

plications. Previous algorithms to control these adaptations, however, have focused on a single

component. This work takes the first step toward developing algorithms that can jointly control

adaptations in multiple interacting components for general-purpose applications, with the goal of

minimizing the total energy consumed within a specified performance loss. Specifically, we develop

a joint-adaptation algorithm for processor and memory adaptations. We identify two properties that

enable per-component algorithms to be easily used in a cross-component context—the algorithms’

performance impact must be guaranteed and composable. We then modify a current processor

and a memory algorithm to obey these properties. This allows the cross-component problem to be

reduced to determine an appropriate (energy-optimal) allocation of the target performance loss

(slack) between the two components. We develop such an optimal slack allocation algorithm that

exploits the above properties. The result is an efficient cross-component adaptation framework that

minimizes the total energy of the processor and memory without exceeding the target performance

loss, while substantially leveraging current per-component algorithms. Our experiments show that

joint processor and memory adaptation provides significantly more energy savings than adapting

either component alone; intelligent slack distribution is specifically effective for highly compute-

or memory-intensive applications; and the performance slowdown never exceeds the specification.

Categories and Subject Descriptors: C.5.5 [Computer System Implementation]: Servers; C.4

[Performance of Systems]

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Energy management, low-power design, processor, memory,

performance guarantee, control algorithms, adaptive systems

ACM Reference Format:
Li, X., Gupta, R., Adve, S. V., and Zhou, Y. 2007. Cross-component energy management: Joint

adaptation of processor and memory. ACM Trans. Archit. Code Optim. 4, 3, Article 14 (September

2007), 31 pages. DOI = 10.1145/ 1275937.1275938 http://doi.acm.org/10.1145/1275937.1275938

This work is supported in part by an equipment donation from AMD and the National Science Foun-

dation under Grant No. CCR-0205638, CCR-0209198, CCF-0313286, CCF-0541188, EIA-0224453,

and EIA-0313286.

Authors’ address: Xiaodong Li, Ritu Gupta, Sarita V. Adve, and Yuanyuan Zhou, University of

Illinois at Urbana-Champaign, Urbana, Illinois 61801; email: xli3@uiuc.edu, rgupta5@uiuc.edu,

sadve@cs.uiuc.edu, yyzhou@cs.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1544-3566/2007/09-ART14 $5.00 DOI 10.1145/1275937.1275938 http://doi.acm.org/

10.1145/1275937.1275938

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 2 • X. Li et al.

1. INTRODUCTION

Energy consumption is an important design-time concern across a large spec-
trum of computer systems. These systems include mobile systems, such as lap-
tops, where battery life must be maximized, as well as high-end servers in
data centers, where the energy and cooling bill must be minimized [Carrera
et al. 2003; Gurumurthi et al. 2003; Lefurgy et al. 2003]. The last few years
have seen a significant amount of research in the use of adaptation to save
energy in various hardware components, such as the processor [Albonesi 1999;
Brooks and Martonosi 1999], memory [Lebeck et al. 2000], disk [Gurumurthi
et al. 2003], network card [Kravets and Krishnan 1998], and display [Flinn
and Satyanarayanan 1999]. The general idea is to support multiple power
modes for a given component and provide a control algorithm that sets the
appropriate mode at a given time (e.g., appropriate size of the processor in-
struction queue [Folegnani and Gonzlez 2001], power down state of a memory
chip [Lebeck et al. 2000; Li et al. 2004], and speed of a disk [Gurumurthi et al.
2003]). The control algorithm is critical to the effectiveness of the adaptive
components and much recent research has focused on the design of such algo-
rithms. Most such algorithms, however, focus on a single hardware component
(e.g., processor, memory, disk), seeking to minimize the energy consumed by
that component.

In a real system, multiple components can be significant contributors to the
total system energy. For example, while much of the early focus on energy
management was on processors, more recently, researchers have recognized
that memory is also a key consumer of energy. A study shows that for fully
configured IBM server systems, memory energy can be as high as 150% of pro-
cessor energy [Lefurgy et al. 2003], making both processor and memory signifi-
cant contributors to the overall system energy. Further, as energy-management
techniques are applied to one component to reduce its energy, other components
become dominant contributors. Thus, to reap the full benefits of energy manage-
ment research for real systems will require the ability to use per-component con-
trol algorithms in concert with each other. There are at least two concerns that
motivate rethinking these algorithms for use in such a cross-component context.

1. Minimizing per-component energy may not minimize total system energy.
First, in a system with multiple adaptive components, minimizing the energy
of a given component may not minimize the energy of the system. Fan et al.
[2003] show data to illustrate this for processor and memory components,
using an idealized dynamic voltage-scaling algorithm for the processor and
a simple memory power-control algorithm. Table I illustrates this effect for
the adaptations and algorithms studied in this paper. For the equake SPEC
benchmark, Table I shows the total and component-wise energy consumption
of systems that (i) minimize processor energy with processor-only adapta-
tion (P), (ii) minimize memory energy with memory-only adaptation (M),
and (iii) minimize total processor and memory energy with joint adaptation
of the two components (PM). (The energy reported is normalized to the base,
nonadaptive system.) Details for these results appear in later sections. Here
we note that the PM system has higher processor energy than P and higher

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 3

Table I. Total and Per-Component Energy with Processor Only, Memory Only, and

Joint-Processor–Memory Adaptation for Equake with 5% Slack (Defined as the

Target Performance Slowdown)a

Components Adapted (%)

Processor-Only Memory-Only Processor and Memory

Processor energy 36.2 72.2 41.7

Memory energy 27.9 7.6 10.7

Total energy 64.1 79.8 52.4

aThe energy reported is normalized to the total energy of the base, non-adaptive system.

memory energy than M. Thus, the processor configuration that produces
system-wide minimum energy uses more energy than the processor configu-
ration that minimizes only the processor energy. An analogous observation
holds for memory energy. This data clearly indicates that the naive com-
binations of the processor and memory management algorithms may not
minimize total energy.

2. Total per-component performance degradation may exceed acceptable sys-
tem limit. Second, energy-driven adaptations typically have an adverse im-
pact on performance. Most (but not all) prior work for general-purpose ap-
plications aims to reduce energy without “much” loss in performance, but
without bounding this loss. These algorithms are typically based on heuris-
tics that are painstakingly hand-tuned to limit performance loss. Even so,
these algorithms may incur unpredictable and unacceptable performance
losses for situations outside the training set of the tuning. For example, Li
et al. [2004] report that heuristics based memory algorithms tuned for one
SPEC application with 10% slowdown give a slowdown of 60% for another
SPEC application. Combining such heuristics-based algorithms in multiple
components would make this situation even worse, potentially exploding the
parameter space that needs to be hand-tuned. Recognizing the limitations
of hand-tuned heuristics-based algorithms, recent work has considered al-
gorithms that assume an acceptable slowdown, and specifically target that
slowdown for reducing energy [Li et al. 2004; Huang et al. 2000, 2003b;
Dropsho et al. 2002; Hughes and Adve 2004]. When using such algorithms
for multiple components, it is unclear how to spread the target performance
loss across the different components’ energy-management algorithms.

The above two concerns motivate a rethinking of adaptation algorithms for
cross-component adaptation. This paper takes the first step in designing such
cross-component control algorithms for saving energy for general-purpose ap-
plications. In this work, we focus on the processor and memory components;
since they interact closely, they are significant consumers of system energy in
important system classes [Lefurgy et al. 2003] and there has been much work
done in control algorithms for these components.

Given the limitations of the hand-tuned heuristics-based algorithms
discussed above, our work follows the algorithms that assume a specified
acceptable slowdown and guarantees not to exceed that slowdown. (Section 2
further justifies this decision.) Thus, our goal is to develop control algorithms

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 4 • X. Li et al.

for processor and memory adaptations that can minimize the total processor
and memory energy while incurring no more than a target performance
slowdown (referred to as the slack).

Rather than develop new control algorithms from scratch, our approach is to
leverage the substantial work already done in the domains of processor and
memory adaptation. We identify properties of component-wise control algo-
rithms that enable their use in a cross-component adaptive system. Specifically,
the performance impact of the algorithms must be guaranteed and composable
(further elaborated in Section 2). We then show how a current algorithm for each
of processor and memory can be modified to satisfy the identified properties.
The composability property allows our cross-component framework to use the
modified algorithms virtually independently for their respective components.
To minimize total energy and provide a total performance guarantee, our frame-
work uses a new, but simple, piece called the optimal slack-allocation algorithm.
This algorithm uses the performance guarantee and composability properties
of the per-component algorithms to distribute the target slack between them in
a manner that minimizes total energy (and limits total performance degrada-
tion). Each component’s algorithm is now able to take the allocated slack and
independently perform its component’s energy management.

Our cross-component framework has the following benefits: (1) The most dif-
ficult parts of energy management, i.e., the control algorithms for the individual
components leverage currently existing work. The changes to the current al-
gorithms are relatively small. (2) The adaptations of the two components are
coupled through the slack-allocation algorithm, but this is a loose coupling and
the actual control algorithms operate independently of each other. This is im-
portant since different vendors provide the processor and memory; a framework
that requires a tight coupling among the two components could be difficult to
deploy in practice and potentially incur excessive overheads.

We perform experiments with six SPEC benchmarks and three values of
slack. We find that the modified processor and memory adaptation algorithms
alone are both effective in saving energy, but the cross-component adaptation
algorithm saves more energy than either technique alone. Our results show the
importance of distributing slack among processor and memory in an intelligent-
and application-dependent way. Specifically, for applications that are strongly
computation-intensive or strongly memory-intensive, the optimal slack algo-
rithm provides significant benefits over any naive distribution. For applications
that are in-between, we find that there is a large area where the energy savings
are not very sensitive to the distribution. Thus, dividing slack equally among
processor and memory is almost as effective as the optimal distribution. Finally,
our algorithm is able to guarantee the required performance, in all cases.

2. OVERVIEW OF OUR APPROACH

2.1 Targeting a Performance Slowdown

As discussed in Section 1, previous heuristics-based algorithms that at-
tempt to save energy without “much” loss in performance require painstaking

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 5

hand-tuning, and, even so, can result in unbounded and unpredictable per-
formance loss for scenarios outside the tuning training set. This is not ac-
ceptable for systems, such as high-end data centers, which need to guarantee
a performance level to honor service-level agreements with customers. Sec-
ond, with the advent of the utility computing model, host data centers may
find it profitable to follow a business model where users give up some perfor-
mance to save energy (i.e., cost). We, therefore, follow the approach of the pre-
vious algorithms that target a specific performance slowdown and save energy
within this slowdown (e.g., [Dropsho et al. 2002; Huang et al. 2000, 2003b;
Hughes and Adve 2004; Li et al. 2004]). As discussed in more detail in Li
et al. [2004], the right metric for measuring delivered performance is unclear.
However, such a metric is independent of whether there is support for energy
management and is the subject of other research, especially in the context
of utility-based computing models. In this paper, following previous work [Li
et al. 2004; Huang et al. 2000, 2003b], we assume that the user is provided
the option to get a base “best” performance without energy management, or to
further save cost (i.e., energy) by accepting a slowdown relative to this base
performance [Li et al. 2004]. We refer to this acceptable slowdown as slack and
assume it is an input to our system. Other measures and methods of speci-
fying slack are possible, but are independent of and outside the scope of this
work.

There are two practical challenges to meeting our goal of minimizing proces-
sor + memory energy within the target slack.

2.1.1 Separating the Impact of Processor and Memory Adaptations. As
Table I illustrates, processor and memory adaptations have an impact on each
other. Processor adaptation can affect the time between memory requests, lead-
ing to reactions by the underlying memory algorithm. For example, many mem-
ory algorithms transition to a low power state if the interrequest time exceeds
a certain threshold [Lebeck et al. 2000; Li et al. 2004]. This results in slower
response for a subsequent request. This increased response time could, in turn,
affect the processor adaptation algorithm. For example, many processor algo-
rithms monitor the utilization of a resource and shut it down if the utilization is
below a threshold [Bahar and Manne 2001; Folegnani and Gonzlez 2001; Pono-
marev et al. 2001; Sasanka et al. 2002]. The increased memory response time
could result in crossing this threshold. This, in turn, could further increase the
processor’s interrequest time to memory.

The above potentially cyclic interaction implies that a joint processor and
memory adaptation algorithm would need to tightly integrate the decisions for
the two adaptations. A straightforward such algorithm is to search the cross-
product of the space of all possible processor and memory configurations to
determine the optimal processor + memory configuration. Unfortunately, cur-
rent processor and memory adaptation algorithms are already complex enough
when used in isolation; tightly coupling them will significantly exacerbate their
complexity. Furthermore, since processors and memories are designed by dif-
ferent vendors, an algorithm that tightly integrates their adaptations would be
difficult to deploy, in practice.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 6 • X. Li et al.

To address this problem, we require the use of processor and memory algo-
rithms for which the performance impact is guaranteed and composable. By
guaranteed performance, we mean that for any target performance slowdown,
the algorithm should provide a guarantee to not exceed that slowdown. By
composable performance, we mean that it should be possible to independently
deploy both algorithms with a specified slowdown value for each and bound the
total net slowdown.

Thus, the first piece of the framework is to design performance guaranteed
and composable algorithms for processor and memory adaptation.

2.1.2 Optimal Slack Allocation between Processor and Memory. Once we
create performance guaranteed and composable per-component algorithms, the
next step is to determine the allocation of slack to each component such that
the total slack does not exceed the target and the total energy is minimized. We
expect that depending on the application, the optimal allocation of the slack
to the processor or memory would differ. The final piece of the framework,
therefore, is to determine a method for optimally distributing the total avail-
able slack among the processor and memory adaptation algorithms for a given
application.

The following sections describe the individual processor and memory algo-
rithms followed by the slack-allocation algorithm.

3. PROCESSOR ADAPTATION ALGORITHM

Recently researchers have proposed several processor adaptations to save en-
ergy, e.g., instruction window/issue queue resizing [Buyuktosunoglu et al. 2000;
Folegnani and Gonzlez 2001; Ponomarev et al. 2001], changing the number
of active functional units [Bahar and Manne 2001], pipeline gating on some
branches [Manne et al. 1998], and dynamic voltage scaling [Govil et al. 1995;
Lu et al. 2002]. As mentioned, the focus of our work is on algorithms to control
such adaptations.

3.1 Time Scale of Adaptation

To design performance guaranteed and composable control algorithms, a key
decision is the choice of time scale of adaptation. Previous processor algorithms
for general-purpose applications have adapted on a time scale of several hun-
dred to thousand instructions [Bahar and Manne 2001; Brooks and Martonosi
1999; Buyuktosunoglu et al. 2000; Dropsho et al. 2002; Folegnani and Gonzlez
2001; Manne et al. 1998; Maro et al. 2000; Ponomarev et al. 2001], several mil-
lion instructions [Huang et al. 2000], subroutines [Huang et al. 2003b], or based
on phase-based behavior of programs [Sherwood et al. 2003; Dhodhapkar and
Smith 2002]. Each decision exploits a certain type of execution variability. Of
these, Huang et al. [2000, 2003b] target a given slack, however, none of these
algorithms provide a guarantee on performance loss.

We choose to use a phase-based granularity for processor (and memory) adap-
tation for the following reasons. Sherwood et al. [2003] have shown that at a

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 7

large scale (millions of instructions), programs repeat their behavior, and it
is possible to predict the occurrence and performance characteristics of these
repeated phases. Thus, using this granularity is convenient, because it can al-
low for predictable performance loss (and energy usage). Later, we discuss how
we also modify the memory algorithm to operate at phase granularity, enabling
composability of the two algorithms.

To track and classify phases, we can use any technique from the litera-
ture. For our experiments in this work, we chose the widely used technique
of Sherwood et al. [2003]. We discuss more recent alternatives (e.g., Isci and
Martonosi [2006]) in the related work section. The technique by Sherwood et al.
[2003] tracks and classifies phases every 10 million instructions. It is based
upon code execution frequencies and is independent of the architecture config-
uration used to run the phase. At the end of each group of 10 M instructions
(referred to as a phase interval), the phase-classification technique assigns a
unique PhaseID corresponding to the tracked phase. We refer to a phase inter-
val classified as a given phase as an occurrence of that phase.

The algorithm also requires a phase predictor to predict the phaseID of the
next phase interval. We experiment with two phase predictors: (1) a perfect
predictor to determine the limits of the energy benefits from our adaptations,
and (2) a simple predictor, which predicts the phase of the next interval to be
the same as the current interval, referred to as Simple predictor.

3.2 Phase-Based Processor Adaptation Algorithm

We derive a phase-based processor adaptation algorithm that chooses the low-
est energy processor configuration for the allocated slack at the beginning of
each phase interval. In principle, we can use any processor algorithm that can
determine such a configuration. Our algorithm is derived from previous work
for multimedia applications [Hughes et al. 2001]. That algorithm works at the
granularity of a multimedia application frame, which is analogous (but not
identical) to the notion of a phase (see Section 8 for more details). We combine
that algorithm with a performance guarantee algorithm (derived from Li et al.
[2004]) that ensures that the targeted slack will not be exceeded, even if the
phase was mispredicted and the wrong configuration inadvertently used. The
performance guarantee algorithm assumes that different occurrences of the
same phase show stable behavior and the programs are long-running (further
elaborated below).

3.2.1 Algorithm Assuming Perfect Phase Predictor. For simplicity, we first
describe our processor algorithm assuming a perfect phase predictor. The goal
of the algorithm is to slow down each occurrence of a phase by the specified
slack. The algorithm employs on-line profiling of the initial occurrences of each
phase. These initial occurrences are run with different processor configurations
(one configuration for an entire phase occurrence) to provide the execution time
and energy for each combination of processor configuration and phaseID. This
time and energy is predicted to be the same across all occurrences of the phase.
After all the profile data is collected for a given phase, the algorithm can simply

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 8 • X. Li et al.

determine the processor configuration with the lowest energy such that its exe-
cution time is within the targeted slack (i.e., the slowdown relative to the base
architecture is less than the user-specified constraint). Subsequent occurrences
of the phase are now run at this chosen processor configuration.

The total number of phase intervals used for profiling with this algorithm
equals Number of distinct phases × Number of processor configurations. Note
that the profiling occurs on-line and possibly interspersed with adaptation
of other phases. For example, if the first phase interval of phaseID i occurs
halfway through the computation, then the first one-half of the computation
may have already been adapting the other phases before profiling for phaseID i
begins.

3.2.2 Algorithm Assuming Imperfect Phase Predictor. The above algo-
rithm is simple, but assumes that the phaseID for the next phase interval can
be predicted perfectly. However, this is not always the case. A phase mispre-
diction could result in choosing a configuration that violates the performance
constraint by using up too much slack. To accommodate this case, we modify
the algorithm (using memory-driven techniques derived from Li et al. [2004])
to track the slack used in each phase interval. If too much slack is used, then
different configurations are chosen in subsequent intervals. These configura-
tions use up less than the user-specified slack and are used until the previous
overuse is compensated for. To achieve this, at the end of the profiling intervals
for a given phaseID, the algorithm builds a table for that phaseID, with an en-
try corresponding to each architecture configuration and sorted in increasing
order of energy. The entry stores the execution time for the architecture for that
phaseID.

Now consider the execution of a phase interval i with a certain phaseID
P , which may have been predicted incorrectly and run with an inappropriate
architecture Arch. We use the following terms:

� T P
Arch : Execution time for P with the architecture Arch.

� T P
base : Execution time for P with the base architecture (as recorded in the

above table).
� Slack : Target user slack (specified as a fraction).
� UsedSlacki : Absolute slack (in terms of time) used in interval i

UsedSlacki = T P
Arch − T P

base
� RemainingSlacki : Unused slack (in terms of time) at the end of interval i

RemainingSlacki = (Absolute slack available at start of interval i)—
UsedSlacki = T P

base ∗ (Slack) + RemainingSlacki−1 − (T P
Arch − T P

base)

If the remaining slack at the end of interval i is negative, then the algorithm
calculates a new desired execution time for the next interval i +1 with phaseID
P ′ as T P ′

base ∗ (1 + Slack) + RemainingSlacki where T P ′
base is the execution time

with the base architecture for the predicted phaseID for interval i + 1.
The algorithm looks up the table for the predicted phase for interval i + 1. It

chooses the first architecture configuration in the table that has an execution
time value less than the above and uses it to run interval i + 1. Assuming

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 9

enough phase intervals remain to execute, any overuse of slack is compensated
for, and a performance guarantee is maintained.1

We note that the above algorithm makes the following two assumptions for a
performance guarantee. First, it assumes a phase classification algorithm such
that different occurrences of the same phase exhibit stable behavior (very small
variations in execution time and energy). Previous work has shown such classi-
fication algorithms for various applications and our experiments show similar
behavior for the algorithm and applications we use. There is also much ongo-
ing research in phase-classification algorithms that strives to achieve this goal
for increasingly large classes of applications (e.g., Isci and Martonosi [2006])
Note that the performance guarantee algorithm does not assume perfect phase
detection. The second assumption is that the program runs long enough that ex-
cessive use of slack because of a phase misprediction can be compensated for in
successive phase intervals. Again, this is a reasonable assumption since energy
management is likely to be important primarily for long-running programs. A
related assumption is that the program exhibits phase behavior (i.e., each phase
occurs many times and phases that occur infrequently comprise a negligible por-
tion of the program). Recently there have been many studies that exploit the
same assumption [Sherwood et al. 2003; Huang et al. 2003b; Dhodhapkar and
Smith 2002; Balasubramonian et al. 2000]. The above assumptions allow our
algorithm to provide a performance guarantee, in practice, as confirmed by our
experimental results (not a single case of performance violation).

The above discussion focused on phase misprediction during adaptation. A
misprediction during profiling is easily handled—the profiling information can
be discarded or used (and a future profile avoided) depending on whether that
combination of phaseID and architecture has previously been profiled.

It is also acceptable to have a context switch during a phase—the adaptation
configuration tables and other information collected by the adaptation or pro-
filing algorithms during the phase interval must be saved and restored across
the context switch. Thus, the operating system is a natural place to implement
our algorithms.

Finally, although the experiments reported here adapt resources in the pro-
cessor core, cache adaptations (at phase granularity) can also be handled as
part of our processor adaptation algorithm and the subsequent joint-adaptation
algorithm. The adaptive caches are simply treated as yet another adaptive re-
source in the processor. Thus, when considering processor configurations for
profiling and adaptation, we also include the different cache configurations in
the configuration space.

3.3 Overheads

The processor algorithm incurs overheads for phase detection/classification,
profiling, and adaptation.

1Note that if there are not enough phase intervals remaining to execute, then assuming a reasonably

long-running execution, the overuse of slack in one phase interval will be a negligible fraction of

the execution time.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 10 • X. Li et al.

3.3.1 Phase Detection and Classification. For phase detection and classi-
fication, we use an architecture similar to the one by Sherwood et al. [2003],
with similar space and time overheads. Specifically, on a branch, its PC is used
to hash into a small (32-entry) accumulator table. The corresponding counter
entry is incremented by the total number of instructions executed since the
last branch. We expect the energy overhead for this to be relatively small com-
pared to the energy saving from the adaptation algorithm (30–50% of the entire
processor energy). In addition, a history table is required to store the phase
footprints (maximum 150 entries for our benchmarks) [Sherwood et al. 2003].
This table is accessed only once for each phase interval; therefore, its energy
overhead is amortized over 10 million instructions and is negligible. Further,
we note that many optimizations have been proposed using phase detection
[Sherwood et al. 2003; Dhodhapkar and Smith 2002] and the overheads can be
further amortized across those optimizations as well. Finally, as noted above,
our algorithm works with any phase-detection mechanism and future improve-
ments in such mechanisms can be incorporated in our work as well.

3.3.2 Profiling. Since profiling is on-line, the overhead stems from in-
creased execution time and/or energy because of the possible use of suboptimal
processor configurations during profiling. However, this overhead is also ex-
pected to be negligible for long-running applications since the number of phase
intervals profiled is expected to be a small fraction of the total intervals exe-
cuted. This overhead can be even further bounded by monitoring the execution
time of the profiled frame. If it exceeds the maximum allowed time for the frame,
the profiled configuration will never be used, profiling can be aborted, and the
processor switched to the base configuration for this phase occurrence.

3.3.3 Adaptation. For adaptation, at the beginning of each phase interval,
we need to predict the phaseID of the next phase interval and perform a table
lookup to find the lowest energy configuration that provides the performance
guarantee. Our Simple predictor simply assumes the next phase interval has
the same phaseID as the previous one; therefore, this overhead is trivial. The
table lookup requires Nconfig number of comparisons in the worst case, where
Nconfig is the total number of processor configurations. Both of these overheads
are incurred only once per phase interval. They are, therefore, amortized over
10 million instructions and are negligible.

4. MEMORY ADAPTATION ALGORITHMS

4.1 Previous Memory Adaptation Algorithms

To reduce memory energy consumption, modern memory systems such as
RDRAM [Rambus 1999] allow each memory chip to transition from normal
active operating mode into several low-power operating modes—standby, nap,
and powerdown. To service a request, a chip in a low-power mode needs to
transition to active, which incurs extra delay and energy.

Researchers have recently proposed several memory adaptation control al-
gorithms [Lebeck et al. 2000; Li et al. 2004] and have shown that a dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 11

Fig. 1. Conceptual view of the dynamic memory adaptation algorithm. t1, t2, and t3 are the idle time

thresholds that memory chips use to transition into a lower power mode. A chip needs to transition

into the active power mode to serve a memory access request. PD calculates the thresholds every

epoch as a function of predicted memory traffic and acceptable slowdown for the next epoch.

scheme that transitions a chip into low-power modes after a threshold of idle
time performs better than a static scheme that places all chips in a fixed power
mode, except when necessary to service a request. Figure 1 gives a conceptual
view of the dynamic memory adaptation algorithm. In this work, we study the
best available state-of-the-art dynamic algorithm, PD, proposed by Li et al.
[2004]. PD eliminates the painstaking manual threshold parameter tuning of
previous work [Lebeck et al. 2000] by periodically tuning its thresholds auto-
matically using a heuristic function. It takes a specified slack as input to both
tune its thresholds and to provide a performance guarantee, based on that slack.

PD uses the insight that the optimal thresholds are a function of the memory
traffic and the acceptable slowdown (slack) that can be incurred. PD recalcu-
lates its thresholds (or adapts) every few million instructions, called an epoch.
At the start of an epoch, it predicts the memory traffic and the available slack
for that epoch. Using these predictions and a predetermined heuristic function,
it calculates a set of thresholds for that epoch. These thresholds specify the idle
times after which PD will transition memory from one power mode to another
during that epoch.

To overcome any errors in its predictions and heuristics, PD provides an ad-
ditional heuristic parameter to self-adjust the threshold computation functions
for the next epoch, based on its performance in the last epoch.

To provide a performance guarantee, PD tracks the slowdown introduced
by its memory adaptation and forces all chips to active when the observed
slowdown is greater than the maximum slowdown allowed by the user.

4.2 Modified PD Algorithm

We modify PD for cross-component adaptation as follows. First, we modify PD to
adapt at the granularity of a phase (versus an epoch). Having both the processor
and memory algorithms adapt at the same granularity allows for composability.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 12 • X. Li et al.

Using the phase granularity for memory also increases the accuracy of some
predictions required by the memory algorithm. Specifically, to set its thresholds
for the next epoch, the original PD needs to predict the memory access behavior
of the next epoch. The modified PD sets the thresholds at the start of a new
phase interval and needs to predict the memory access behavior in that phase
interval. The algorithm can make this prediction quite accurately, based on
profiled information for the phase (analogous to the processor algorithm).

Second, the original PD sets its thresholds (and resulting energy savings)
based on a function of the available slack for the next epoch and a dynam-
ically adjustable heuristic parameter called Self adjust factor (term C in [Li
et al. 2004]). As discussed in Section 5, the joint processor-memory algorithm
relies on profiling information to determine the energy savings with different
memory adaptations (thresholds). To reduce the number of profiles needed, we
fix the Self adjust factor to an empirically determined value (10). The modified
algorithm is still able to adapt and save energy effectively, responding to the
available slack. As we will see later from Figures 4 and 5, the modified PD algo-
rithm reduces memory energy to a small fraction of the base memory energy, in
most cases. Further, the system energy is dominated by the processor energy.
Therefore, we expect the total system energy savings from our modifications to
be close to those achievable from the original algorithm.

The overhead of the modified PD algorithm is almost the same as that of the
original PD algorithm (discussed in detail in Li et al. [2004]). The algorithm
uses the same phase detector (and amortizes its overhead) as the processor-
adaptation algorithm.

5. JOINT PROCESSOR AND MEMORY ADAPTATION

As mentioned in Section 2, our framework for joint processor and memory
adaptation requires (1) performance guaranteed and composable processor-
and memory-adaptation algorithms and (2) an optimal slack-allocation algo-
rithm. Section 5.1 discusses how the modified algorithms described in Sections 3
and 4.2 satisfy the performance guarantee and composability properties. Sec-
tion 5.2 then presents the slack-distribution algorithm. Section 5.3 summarizes
the full framework.

5.1 Performance Guarantee and Composability

Sections 3 and 4 already describe how our processor and memory algorithms
provide a performance guarantee. We next show that they are also performance
composable at the phase granularity. That is, we need to show that it should
be possible to deploy both algorithms with a specified slack value for each and
bound the total net slowdown at the phase granularity.

Let the total execution time without any processor and memory adaptation
be Tbase. First, consider the case where only the processor adapts with allocated
slack Scpu. The processor algorithm (Section 3) chooses a minimum energy con-
figuration, C, while satisfying the performance bound corresponding to Scpu.
Let the execution time for this processor configuration be TC (for the given
phase). Then TC ≤ Tbase ∗ (1 + Scpu).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 13

Next, consider the case where memory adapts in addition to the processor.
Since the processor configuration C stays fixed for the entire phase interval,
the impact of our memory adaptation algorithm is to incur a slack, say Smem,
relative to the execution time with the processor configuration C and no memory
adaptation. That is, if C is different from the base processor, then from the
viewpoint of the memory algorithm, the processor appears simply as a lower
configuration new processor on which memory exerts an independent slack of
Smem. Thus, if T is the execution time with the processor and memory adapta-
tions, we have T ≤ TC ∗ (1 + Smem). Substituting for TC, we have:

T ≤ Tbase ∗ (1 + Scpu) ∗ (1 + Smem) (1)

The above equation allows us to express the total slack as a function of the
slack given to the processor and memory and, therefore, the algorithms are
composable at the phase granularity.

Note that this composability property occurs as a result of the design of our
algorithms, because (1) both processor and memory adapt at the same time scale
of a phase interval, (2) the processor’s configuration stays fixed throughout a
phase interval and is not affected by the memory algorithm, and (3) the memory
algorithm measures its slack with respect to this fixed processor configuration,
but is not affected by the processor’s adaptation in any other way.

In general, processor and memory adaptation algorithms may not be com-
posable. As described in Section 2, the adaptation of one component can poten-
tially affect the other. For example, processor adaptation can potentially affect
the time between memory requests. This can lead to reactions by the underly-
ing memory algorithm, e.g., the interrequest time may exceed the threshold for
the PD algorithm, resulting in the memory going to a lower power state and
increasing the service time for the subsequent accesses. This increased service
time could, in turn, affect the processor adaptation algorithm (e.g., if the pro-
cessor adapts its resources based on the utilization of the resources), causing a
cyclic effect.

Our choice of the processor and memory algorithms breaks the above cycle
and allows the two to operate independently.

5.2 Optimal Slack-Distribution Algorithm

The goal of the slack-distribution algorithm is to divide the total target slack be-
tween processor and memory to minimize the total energy consumed. The opti-
mal distribution is not straightforward to determine because the energy savings
per unit slack are different for processor and memory and are application-
dependent. To achieve an optimal algorithm, we first formalize an optimization
problem for each phase interval as follows.

5.2.1 Problem Formalization. Let Tbase, Scpu, and Smem be as defined in
Section 5.1. Suppose the user specified slack is AvailableSlack (e.g., 10%). Let
T be the execution time, Ecpu be the processor energy, and Emem be the memory
energy with processor and memory adaptations for the given phase interval.
T , Ecpu, and Emem are functions of Scpu and Smem, and T should satisfy the
performance constraint. The slack distribution problem can now be stated as

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 14 • X. Li et al.

the following optimization problem:

minimize Ecpu(Scpu, Smem) + Emem(Scpu, Smem)

subject to T (Scpu, Smem) ≤ Tbase ∗ (1 + AvailableSlack) . . . performance constraint

5.2.2 Determining Functions Ecpu(Scpu, Smem) and Emem(Scpu, Smem). The
first challenge to solve the above optimization problem is to find the relationship
between a slack distribution, Scpu and Smem, and the energy, Ecpu and Emem.
One method to address this challenge is to analytically estimate Ecpu and Emem

based on Scpu and Smem; however, such an estimate is difficult enough even with
adaptation in a single component. Our solution is to use a profile-based method
analogous to the processor algorithm. The slack distribution, Scpu and Smem,
determines a corresponding processor and memory (threshold) configuration,
say P (Scpu) and M (Smem), respectively. At run time, for each phaseID and a
given slack distribution, we use one phase occurrence to set the processor and
memory configuration to P (Scpu) and M (Scpu), respectively, and measure the
resulting energy consumption, Ecpu and Emem.

5.2.3 Satisfying the Performance Constraint. The next challenge is to de-
termine which slack distributions will satisfy the performance constraint. Us-
ing the composability property (Eq. 1 from Section 5.1), it follows that the per-
formance constraint in the above formulation is satisfied if

(1 + Scpu) ∗ (1 + Smem) ≤ (1 + AvailableSlack) (2)

5.2.4 Solving the Optimization Problem. Equation (2) enables an efficient
search through the space of possible slack distributions to solve the optimiza-
tion problem. First, we discretize the interval [0, AvailableSlack] into several
steps. For each step, we assign the value of the step to Scpu and calculate Smem

based on Eq. (2). Equation (2) allows several values for Smem; we choose the max-
imum value, because the energy Emem is usually smaller with a larger slack.
This yields a small number of slack distributions that satisfy the performance
constraint and that need to be explored. We can simply perform a linear search
over these distributions. For each distribution, we determine the total energy
(Ecpu + Emem) for that phase (using the profile method described above). We
solve the problem by choosing the distribution (Scpu, Smem) with the minimum
total energy.

In our experiments, we report results with AvailableSlack values of 5, 10,
and 20%. We used a total of 6 slack distributions (i.e., profile 6 occurrences of
each phaseID) to obtain the best slack distribution for the 5% AvailableSlack
case and 11 slack distributions for the 10 and 20% cases. (The number of slack
distributions explored is adjustable. The user may explore more distributions
to improve the precision of solution at the expense of more profiling. We chose
the above numbers to achieve a good trade-off between profiling overhead and
precision.)

5.3 Putting it Together

Figure 2 provides a high-level conceptual overview of the joint algorithm. In our
implementation, once the optimal slack distribution for a phaseID is chosen,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 15

Fig. 2. Conceptual view of the joint adaptation algorithm.

Fig. 3. Joint algorithm.

the processor configuration and memory thresholds corresponding to that dis-
tribution are stored in a table indexed by the phaseID. At the beginning of a
phase interval, the implementation looks up this table and sets the processor
and memory configurations accordingly for the phase. The full algorithm is
summarized as Algorithm 1 in Figure 3.

In case of phase mispredictions, we could use the individual processor and
memory performance guarantee algorithms separately to ensure that the over-
all performance constraint is satisfied. In our implementation, we use a unified
performance guarantee algorithm similar to that of the processor algorithm.
This algorithm tracks the slack used in each phase interval (as in the proces-
sor algorithm). If too much slack is used, subsequent phase intervals use the
base processor configuration and active power mode for memory until the initial
target slack is reaccumulated.

5.3.1 Overhead Analysis. The overheads of the joint algorithm because
of the constituent processor and memory adaptation algorithms have already

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 16 • X. Li et al.

been discussed in Sections 3.3 and 4.2. The slack distribution aspect incurs the
following additional overhead.

For each phaseID, the number of intervals profiled now increases (from the
number of processor configurations) by the number of slack distributions (steps
3–7 in algorithm 1). This increase is small, relative to the total number of phase
intervals. It is also small when contrasted with a naive joint algorithm that
performs a search of the cross-product of the configuration space for processor
and memory. In general, if M is the number of processor configurations and N
is the number of slack distributions, then for each phaseID, our algorithm needs
N additional profiles over the M already required for processor adaptation. For
our experiments M is 54 and N is 6 or 11. In contrast, a naive joint algorithm
would need (M × N) additional profiles per phase over processor adaptation.
For our experiments, this is a substantial 324–594 additional profiles over the
54 already needed.

The algorithm also stores the optimal processor configuration and memory
thresholds for each phaseID in a table. The space overhead for this is small
since the number of distinct phases in the application is typically small (< 35)
and each table entry is only a few bytes. For adaptation, at the beginning of
each interval, the algorithm determines the appropriate configuration using a
single lookup in the above (small) table. This is negligible, considering that it
is incurred once every 10 M instructions.

6. EXPERIMENTAL METHODOLOGY

We use the execution-driven RSIM simulator [Hughes et al. 2002] for perfor-
mance evaluation and the Wattch tool [Brooks et al. 2000] integrated with RSIM
for energy. We enhanced RSIM with the RDRAM memory model [Rambus 1999]
to simulate memory energy and delay.

The base processor studied is similar to the MIPS R10000 and is summarized
in Table II. We assume a centralized instruction window with a unified reorder
buffer and issue queue, but a separate physical register file. We allow adapta-
tion of issue width, instruction window size, and the number of functional units,
similar to previous work [Hughes et al. 2001; Sasanka et al. 2002]. Our algo-
rithm can incorporate adaptations in other processor resources as well, includ-
ing adaptive caches, as mentioned in Section 3. It is applicable to other archi-
tectures as well, including those with a separate issue queue and reorder buffer.

As in previous work [Hughes et al. 2001; Sasanka et al. 2002], experiments
with instruction window adaptation assume eight entry instruction window
segments and that at least two segments are always active. A smaller instruc-
tion window requires fewer physical registers. We deactivate one integer and
one floating-point physical register with each deactivated instruction window
entry. Experiments with functional unit adaptations assume that issue width is
equal to the sum of the functional units and, hence, changes with the number
of functional units. Consequently, when a functional unit is deactivated, the
corresponding instruction selection logic is also deactivated. Similarly, the cor-
responding parts of the result bus, the wake up ports of the instruction window,
and ports of the register file are also deactivated.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 17

Table II. Base System Parameters

Base Processor Parameters

Processor speed 1 GHz

Fetch/retire rate 6 per cycle

Functional units 6 int, 4 FP, 2 address generation

Integer FU latencies 1/7/12 add/multiply/divide(pipelined)

FPU latencies 4 default, 12 divide (all but divide pipelined)

Instruction window 128 entries

Register file size 192 integer and 192 FP

Memory queue size 32 entries

Branch prediction 2 KB bimodal agree, 32-entry RAS

Base Memory Hierarchy Parameters

L1 (Data) 64 KB, 2-way associative, 64B line

2 ports, 12 MSHRs

L1 (Instr) 32 KB, 2-way associative

L2 (Unified) 1 MB, 4-way associative, 64B line

1 port, 12 MSHRs

Base Contentionless Memory Latencies

L1(Data) hit time (on-chip) 2 cycles

L2 hit time (off-chip) 20 cycles

Main memory (off-chip) 100 cycles

We assume clock gating for all components of all the processor configurations
(adaptive and nonadaptive). If a component is clock-gated (i.e., not accessed) in a
given cycle, we charge 10% of its maximum power. To fairly represent the state-
of-the-art, we also gate the wake-up logic for empty and ready entries in the
instruction window as proposed in Folegnani and Gonzlez [2001]. We assume
that the resources deactivated by our adaptive algorithms do not consume any
power (i.e., they are power gated). Thus, deactivating an unused component
saves 10% of the maximum power of the component (i.e., the remaining power
after gating).

We profile all possible combinations of the following configurations (54 total):
instruction window ∈ {128, 96, 64, 48, 32, 16}, number of ALUs ∈ {6, 4, 2} and
number of FPUs ∈ {4, 2, 1}. We also evaluated our algorithms with a reduced
set of configurations to reduce profiling overhead (10 for integer, 13 for FP
applications). The results were qualitatively similar; we present results with
full profiling to give the processor-only algorithm the best showing.

Table III shows the RDRAM model we use, including the energy consumption
for each 512 MB chip and the transition time between different states. We
simulate the memory system with eight such memory chips.

We evaluate our algorithms using six SPEC CPU2000 benchmarks, gzip,
mcf, and twolf from SPECint and ammp, equake, and mesa from SPECfp. We
do not simulate all the SPEC benchmarks because the simulations take a very
long time (see below). We chose the above six SPEC benchmarks to cover the
space of compute-bound versus memory-bound behavior. Our detailed analysis
(Section 7.1.2) shows that this is the primary aspect that affects the impact of
our algorithm. Since we already cover applications that demonstrate a broad
spectrum of compute-bound versus memory-bound behavior, we do not expect
that numbers for more benchmarks would provide more insight on the efficacy

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 18 • X. Li et al.

Table III. RDRAM Power Consumption and Transition

Time/Power for Different Power Modes

Power State Power

Active/standby/nap/powerdown 300/180/30/3 mW

Transition Power and Time

Active → standby 240 mW/1 memory cycle

Active → nap 160 mW/8 memory cycles

Active → powerdown 15 mW/8 memory cycles

Standby → active 240 mW/6 ns

Nap → active 160 m0W/60 ns

Powerdown → active 15 mW/6000 ns

of our algorithms than already provided by our analysis. All applications were
compiled with the SPARC SC4.2 compiler. In our simulations, we fast forward
each benchmark to skip the initialization part of the application, based on the
data by Sherwood et al. [2002].

Since the applications take an extremely long time to simulate, we perform
the following two approximations for our simulations. In a real system, these
are not required. Both approximations assume a phase classification algorithm
that shows little variability in performance and energy among occurrences of
the same phaseID. The approximations do not assume that the phase detector
makes perfect predictions of phaseIDs.

For the first approximation, we collect a trace of the phase behavior of all
the applications for their entire length. This does not require detailed timing
simulation and can be quickly collected. Then for each experiment, we per-
formed a more detailed, but slower, timing/energy simulation. For this slower
timing/energy simulation, we simulate the application long enough to ensure
that we collect the necessary profiling data for each phaseID and, subsequently,
each phaseID occurs at least ten times for adaptation.2 (This part alone takes
1 month to simulate for ammp.) The execution times and energy across these
last ten occurrences of a phaseID are averaged to give the execution time and
energy for that phaseID. This average value is then fed into the phase trace
initially collected to determine the energy and execution time of the entire ap-
plication for that experiment. In the results reported, energy is reported for all
phase intervals—for the profiled phase intervals, we conservatively report the
energy with the base architecture (which has the highest energy).

Second, for the joint adaptation runs with the simple predictor, we make the
following approximation to determine the data for mispredicted phases (again,
only for our simulations). As required for the algorithm, we find the best pro-
cessor and memory configuration for each phaseID using profiling. In addition,
we profile an occurrence of each phaseID with each of the processor/memory
configurations determined to be the best for the other phaseIDs. We then use
the trace of the phase behavior along with the simple predictor to determine
the time and energy for the application.

2If the same phase occurs too often through this run, it is fast forwarded, while ensuring that the

simulation is adequately warmed up for the next phase that needs to be measured.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 19

7. RESULTS

Sections 7.1 and 7.2 discuss the energy savings of our algorithms with the per-
fect and simple phase predictors respectively. Section 7.3 discusses the impact
on performance. To assess the sensitivity to the optimal slack distribution be-
tween processor and memory in the joint adaptation case, we also report results
with joint adaptation assuming approximately equal slack distribution among
processor and memory. That is, of the discrete slack distributions profiled, we
choose the one that is closest to an equal distribution. For brevity, we refer to
this as the equal slack distribution algorithm.

7.1 Energy Savings with the Perfect Phase Predictor

7.1.1 Overall Results. With the perfect predictor, for each application and
slack value of 5, 10, and 20%, Figure 4a shows the energy consumption for the
system with only processor adaptation (P), only memory adaptation (M), and
joint processor and memory adaptation using the optimal slack-distribution
algorithm (PM) and using equal slack distribution (PMe), all normalized to
the base system with no adaptation. The first bar in each set in the figure is
for the base system. All bars show the distribution of energy between memory
and processor. Table IV summarizes the above data by presenting the average
and the range of the relative energy savings between key pairs of adaptation
algorithms. Our high-level results are as follows. Section 7.1.2 analyzes these
results in more detail.

7.1.1.1 Processor versus Memory Adaptation. Processor and memory
adaptation both provide significant energy savings in all cases, with proces-
sor adaptation generally being more effective than memory adaptation for our
system. Across all applications and slack values, separate processor and mem-
ory adaptation, respectively, provide an average savings of 31 (range 14–44%)
and 16% (range 13–20%).

7.1.1.2 Joint Adaptation. Joint processor and memory adaptation pro-
vides significantly more energy savings than either one alone. Across all ap-
plications and slack values, compared to the base system, joint processor, and
memory adaptation with optimal slack distribution (PM) provides average en-
ergy savings of 46% (25–64%). When compared to a system that already in-
cludes processor adaptation (P), PM provides energy savings of an average of
22% (10–35%) (relative to the energy consumed by P). Compared to a system
that already includes memory adaptation (M), PM saves an additional 36% on
average (13–55%).

7.1.1.3 Impact of Slack. Increasing slack from 5 to 20% improves energy
savings for many cases. The improvement, however, is modest, at best, for both
processor and memory adaptation alone. With joint adaptation, however, the
modest benefits in each component add up to significant benefits for some appli-
cations. For example, for mcf, the energy saving with joint adaptation increases
from 49 to 64%, when slack increases from 5 to 20%, but for the same slack in-
crease, processor adaptation alone only improves the energy saving from 38 to

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 20 • X. Li et al.

Fig. 4. (a) Energy (normalized to the energy of the base nonadaptive processor) for processor only

(P), memory only (M), and joint adaptation with optimal slack (PM) and equal slack (PMe) for the

full application and three total slack values with perfect phase prediction. (b) Energy (normalized

to the base processor) for joint adaptation for one application phase for three total slack values,

with different slack distributions (the number on the x axis is the slack allocated to the processor).

44% and memory adaptation alone improves the energy saving from 14 to 19%.
The reason for this is explained in detail in Section 7.1.2.

7.1.1.4 Slack Distribution. For joint adaptation, using an appropriate
slack distribution is important—clearly, a distribution of 0% slack to processor/

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 21

Table IV. Relative Energy Savings (in %) for Different Pairs

of Algorithms with the Perfect Phase Predictora

Specified Slack 5% 10% 20%

P vs. base 28 [14, 38] 31 [22, 39] 35 [32, 44]

M vs. base 15 [13, 20] 17 [14, 20] 17 [14, 20]

PM vs. base 41 [25, 49] 46 [30, 57] 52 [42, 64]

PM vs. P 17 [12, 44] 22 [10, 29] 25 [13, 35]

PM vs. M 30 [13, 40] 35 [18, 46] 42 [30, 55]

PM vs. PMe 6 [1, 8] 6 [0, 14] 8 [6, 14]

aThe numbers are average [min, max] reduction in energy consump-

tion of the first algorithm over the second.

all slack to memory (i.e., the M case) or 0% slack to memory/all slack to proces-
sor (i.e., the P case) is much worse than the optimal slack distribution (i.e., the
PM case) for all applications and total slack values. However, our results show
that the energy savings from the optimal slack distribution are close to those
of equal distribution for many applications—average savings of PM over PMe
are 6, 6, and 8 for 5, 10, and 20% total slack values, respectively.3 Nevertheless,
there are some applications for which the optimal distribution is significantly
better. For example, for mcf at 10 and 20% slack, optimal distribution saves 14%
more energy over equal distribution; for mesa at 20% slack, optimal distribution
saves 10% energy over equal distribution. These benefits seem worth exploit-
ing, given that the optimal distribution incurs a small overhead (profiling of a
handful of extra phase intervals).

7.1.2 Analysis. This section uses supplemental data to provide further in-
sights into the high level trends identified. For key phases of each application
and each total slack, Table V shows the processor configuration chosen by P and
PM (shown as P/PM) and the amount of slack allocated to memory in P/PM.
For the longest phase (in terms of number of instructions) of each application
and for each value of total slack, Figure 4b presents energy consumption (nor-
malized to base) for different distributions of the total slack between processor
and memory. The number on the x axis is the amount of slack allocated to the
processor.

7.1.2.1 Processor Adaptation. From Table V, we see that across all appli-
cations, P chooses from a fair number of configurations and often uses different
configurations for different phases of the same application. This results in sig-
nificant energy savings. However, in most cases, the configuration does not
change much with increasing slack, indicating that most (but not all) of the
energy benefits are obtained with a small slack value. Note that for integer
ALUs and instruction window, the base resource sizes are used in several cases
for P and/or PM; therefore, our choice of these sizes for the base was not overly
aggressive. The choice of four base floating point units was overly aggressive
for these applications, since all four units are never used.

3The energy saving of system A over system B is defined as
(energyB−energyA)

energyB
, where energyA and

energyB are the energy consumptions of system A and B, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 22 • X. Li et al.

Table V. Processor Configuration Chosen (# of Active Instruction Window Entries (IW), ALUs

(A), and FPUs (F)) and Slack Allocated to Memory (Mem(%)) for Dominant Phases of Each

Application for Different Total Slack for P and PM Systems (shown as P/PM)a

5% 10% 20%

PhaseID % IPC A F IW Mem(%) A F IW Mem(%) A F IW Mem(%)

ammp
9 25 1.35 2/2 1/1 96/128 0/1.9 2/2 2/1 64/128 0/6.7 2/2 1/1 64/96 0/13.2

14 10 1.42 2/2 2/2 48/48 0/1.9 2/2 2/2 48/48 0/6.7 2/2 2/2 48/48 0/5.3

equake
0 36 0.49 2/2 1/1 96/128 0/3.9 2/2 1/1 96/96 0/6.7 2/2 1/1 48/96 0/15.4

138 5 0.58 2/2 1/1 96/128 0/3.9 2/2 1/1 96/96 0/6.7 2/2 1/1 48/96 0/13.2

gzip
54 20 1.57 4/4 1/1 48/64 0/1.9 4/4 1/1 48/48 0/4.7 2/2 1/1 32/48 0/5.3

13 17 2.17 6/6 1/1 64/64 0/1.9 4/4 1/2 64/64 0/2.8 4/4 1/1 32/48 0/5.3

mcf
11 18 0.16 2/2 1/1 16/32 0/3.9 2/2 1/1 16/32 0/7.8 2/2 1/1 16/16 0/15.4

33 9 0.05 2/2 1/1 48/48 0/3.9 2/2 1/1 48/48 0/8.9 2/2 1/1 48/48 0/17.6

mesa
2 79 1.81 6/6 2/2 96/96 0/1.9 6/6 2/2 64/96 0/6.7 2/4 1/2 48/48 0/5.3

21 4 1.75 4/4 2/2 64/64 0/3.9 2/4 1/2 64/64 0/7.8 2/2 1/1 32/64 0/7.14

twolf
0 57 1.22 4/4 1/1 64/96 0/2.9 2/4 1/1 64/64 0/4.7 2/2 1/1 32/64 0/7.14

8 43 1.42 2/4 1/1 96/96 0/3.4 2/2 1/1 96/96 0/5.3 2/2 1/1 64/64 0/7.14

aThe % column shows the percentage of time that the program spends in the given phase.

7.1.2.2 Memory Adaptation. From Figure 4a, we see that the main reason
that memory adaptation shows lower benefit than processor adaptation is that
in our system, processor energy dominates in the base case. The memory adap-
tation algorithm itself is successful in removing a large fraction of the memory
energy. Again, most (but not all) of the benefit comes at 5% slack. This situation
could change for different systems and applications (e.g., with a server or data
center system and workloads [Lefurgy et al. 2003]).

7.1.2.3 Joint Adaptation—PM versus P and M. Table V shows that for a
given slack, across all applications and across different phases of an application,
the joint-adaptation algorithm often chooses different processor configurations
and different allocation of slack to memory, seeking to maximize energy savings.
Comparing PM to P, we see several cases where the processor configuration
changes to increase the processor energy in PM, as the memory adaptation
tries to use up some of the slack available to minimize total system energy.

In addition, as observed earlier, PM is able to better exploit increasing slack
than either P or M alone. This is explained as follows. For large slack values
(e.g., 20% in Figure 4), the energy saving from PM is close to the sum of the
saving from P and M. For smaller slack values (e.g., 5% in Figure 4), the energy
saving from PM is often less than the sum of the savings from P and M. The
reason is that for the 20% case, P and M are able to put processor and memory,
respectively, into low-power modes and yet not use up all available slack. There
is enough slack that PM is also able to put both processor and memory into low-
power modes. Thus, PM obtains the individual processor and memory savings
from P and M, respectively, to show additive savings. This is not the case with

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 23

5% slack, since 5% is too little for both processor and memory to go into the
same low-power modes, as in the processor only and memory only cases. Thus,
the PM energy savings are less than the sum from the individual components
given 5% each.

7.1.2.4 Impact of Slack Distribution—PM versus PMe. Figure 4b shows
that no single slack distribution is optimal for all applications. For example,
memory intensive mcf uses a slack division so that memory gets a greater
portion of the slack. The processor is given about 1, 2, and 6% slack for total
slack of 5, 10, and 20%, respectively. Increasing slack beyond a small value for
processor-only adaptations is not beneficial because of the memory intensive
nature of this benchmark. The extra slack is beneficial for energy savings only
if it is used for memory adaptations. On the other hand, the compute intensive
mesa chooses a slack distribution where the processor gets a greater chunk—
about 3, 8, and 16% for total slack of 5, 10, and 20%, respectively.

However, in many (but not all) cases, an equal slack distribution provides
energy savings similar to that of the optimal slack distribution algorithm. This
can be explained by the shape of the energy versus slack distribution curves in
Figure 4b. These curves are often flat in the center, most notably for total slack
of 10 and 20%. Since the optimal and equal slack often fall in this flat part, they
both give similar energy savings. The reason for the flatness of the curve is as
follows. Moving from left to right on the x axis, slack is taken away from memory
and given to the processor. In general, this causes memory energy to rise and
processor energy to drop. In many cases, this increase and decrease tends to
negate each other, creating a virtually flat energy curve. Exceptions, however,
arise in the following cases, which result in greater savings with optimal slack
distribution.

The energy curves in Figure 4b are not flat for highly memory- or compute-
intensive applications. In the memory-intensive case (e.g., mcf), the processor
energy part of the curve tends to be flat. This is because even with a small slack,
these applications already choose the minimum (or close) resources for their
architectural configuration (reducing processor resources does not reduce per-
formance if the application is memory-bound). Increasing slack, therefore, does
not have any further effect on processor adaptation. The memory energy curve,
on the other hand, shows a sharp rise in this case. With more slack, memory
adaptation can reduce memory energy significantly, in this case. The net result
is a rising total energy curve where the optimal slack distribution is more to the
left of the equal distribution, providing significant benefits for PM over PMe.

The compute-intensive applications behave in the opposite way. For example,
consider mesa with 20% slack. Here the memory energy tends to be flat, since
a small amount of slack to memory is sufficient to bring the memory down to
low-power mode most of the time—giving memory more slack does not help. On
the other hand, processor energy continues to go down with increasing slack to
the processor, resulting in a decreasing total energy curve and better savings
from PM over PMe.

A final aspect that affects the flatness of the curve is the discrete nature of the
energy savings from different configurations. For example, starting from a slack

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 24 • X. Li et al.

Fig. 5. Energy (normalized to the energy of the base non-adaptive processor) for processor-only

(P), memory-only (M), and joint adaptations (PM, PMe) for the full application and three total slack

values with simple phase prediction.

Table VI. Relative Energy Savings (in %) for Different Pairs

of Algorithms with the Simple Phase Predictora

Specified Slack 5% 10% 20%

P vs. Base 29 [13, 42] 29 [21, 36] 34 [30, 42]

M vs. Base 13 [8, 17] 13 [10, 17] 13 [10, 17]

PM vs. Base 35 [19, 48] 42 [27, 57] 48 [38, 62]

PM vs. P 12 [−3, 20] 19 [3, 32] 22 [11, 34]

PM vs. M 25 [8, 43] 32 [16, 52] 40 [28, 57]

PM vs. PMe 4 [1, 8] 5 [0, 15] 6 [2, 13]

aThe numbers are average [min, max] reduction in energy consumption

of the first algorithm over the second.

of 5%, the processor may not be able to exploit an additional 5% slack, but may
be able to exploit an additional 10% slack, because of the discrete configuration
space available to it. In this case, the processor curve will be flat from 5 to 15%,
but could rise sharply at 15%. This results in some jumps between flat parts in
the curve and also affects the relative savings from PM to PMe.

7.2 Simple versus Perfect Phase Predictor

Figure 5 shows normalized energy with the simple phase predictor, analogous
to Figure 4a. Table VI shows the summary statistics analogous to Table IV.
This data shows the same high level trends as with the perfect predictor:

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 25

Table VII. Percentage Performance Degradation, Relative to the Base Non Adaptive Architecture

5% 10% 20% 5% 10% 20%

Slack P M PM PMe P M PM PMe P M PM PMe P M PM PMe P M PM PMe P M PM PMe

App Perfect Predictor Simple Predictor

ammp 3 3 5 5 7 4 9 9 13 10 15 19 5 4 5 5 10 5 9 10 15 5 7 18

equake 3 1 4 3 4 1 5 4 17 1 18 6 4 1 3 4 5 1 7 6 17 1 17 7

gzip 3 1 5 5 6 1 6 7 16 3 10 8 4 2 4 4 6 2 6 7 13 3 7 6

mcf 3 2 4 4 5 4 6 8 6 5 16 9 5 2 4 5 7 4 6 7 8 6 12 7

mesa 4 3 4 4 6 4 8 8 14 5 17 16 3 5 5 5 9 5 8 9 19 5 19 16

twolf 4 1 4 3 9 2 6 6 18 3 15 11 4 1 4 3 9 2 6 6 18 3 15 11

(1) processor and memory adaptation are effective in all cases, with proces-
sor adaptation being more effective than memory adaptation; (2) joint proces-
sor and memory adaptation gives significant benefits over either adaptation
alone; and (3) appropriate slack distribution for the joint algorithm is impor-
tant, equal distribution gives almost the same benefits as optimal distribution
in many cases, but optimal distribution gives significant benefits over equal
distribution, for some cases, at little additional cost.

Comparing the graphs for perfect and simple phase predictors (Figures 4 and
5), we can see that except for ammp and gzip, even the absolute (normalized)
energy consumption of the individual systems is comparable for the two pre-
dictors (within a few percentage). This is because the simple predictor gives a
high prediction rate on most applications. Further, often even on a mispredic-
tion, the configurations chosen are very close to those with the perfect predictor
(the case for equake).

7.3 Performance Impact

Table VII gives the performance degradation for each case for both the perfect
and simple predictors. It shows that the performance guarantee algorithm is
effective in all cases. Since the processor configurations are discrete, increasing
the amount of available slack does not necessarily result in a linear increase
in the actual performance degradation. Furthermore, the algorithm is conser-
vative in estimating the performance degradation to provide the performance
guarantee; therefore, in some cases, only a small portion of the allowed slack is
used.

8. RELATED WORK

8.1 Cross-Component Joint Adaptation

To our knowledge, there has been little previous work on control algorithms for
cross-component joint adaptation for general-purpose applications.

Recent work by Felter et al. [2005] is the most related to our work. That work
considers the problem of maintaining a peak power constraint while maximiz-
ing performance. The work is based on the insight that different components
use their peak power at different times; therefore, judicious allocation of peak
power among the components can reduce the overall peak power requirement
without much impact on performance. Their technique, called power shifting,
dynamically changes the allocation of peak power to processor and memory

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 26 • X. Li et al.

every interval (e.g., every few 1000 cycles) based on the workload. They achieve
this by calculating a maximum number of processor instructions and memory
accesses that can be performed each interval based on certain heuristic func-
tions. In contrast, our work seeks to minimize energy for a given performance
degradation by distributing performance slack among different components.

Related to cross-component adaptation is the work on cross-layer adaptation
for multimedia applications (e.g., Yuan et al. [2003]). The focus of that work is
on cooperative adaptation of different system layers such as hardware, appli-
cations, network, and the operating system. For example, the GRACE project
has proposed an adaptive video encoder application that allows a tradeoff be-
tween CPU and network energy and works with an adaptive processor and
an adaptive operating system scheduling algorithm. The GRACE control algo-
rithm determines the appropriate configuration for each application, hardware,
and a schedule to minimize the total processor and network energy [Sachs et al.
2003; Vardhan et al. 2005]. The network itself is not adaptive and any inter-
action between the processor and network energy arises from the adaptations
in the application. This line of work exploits special properties of multimedia
applications. Further, we are not aware of any work that optimizes the total
energy of closely interacting components, such as processor and memory.

Fan et al. [2003] studied a system with processor dynamic voltage/scaling
(DVS) and memory adaptation for multimedia workloads and showed that
there is a positive synergistic effect between DVS and memory adaptation.
Their work, however, does not provide any control algorithm to decide the opti-
mal configuration for the processor and memory. Recently, Cho et al. [Cho and
Chang 2004] studied a system with processor DVS and nonadaptive memory.
They analytically derive an energy-optimal frequency assignment to optimize
the total (processor memory) energy. We also optimize for the total energy, but
consider a more complex system where both processor and memory are adap-
tive and where the impact of the processor adaptations is difficult to model
analytically.

8.2 Separate Memory and Processor Adaptation

Substantial work has been done on control algorithms for separately adapting
memory and processor for saving energy for general-purpose applications.

Section 4.1 already discussed some memory-adaptation algorithms. In ad-
dition, Delaluz et al. [2000, 2001] studied compiler-directed techniques, as
well as operating-system-based approaches [Delaluz et al. 2002a, 2002b] to re-
duce the energy consumed by the memory subsystem. Recently, Padnamabhan
et al. [Huang et al. 2003b] proposed power-aware virtual memory implementa-
tion in operating systems to reduce memory energy consumption.

Most of the processor algorithms exploit fine-grain temporal variability for
which it is difficult to predict slack used [Albonesi 1999; Bahar and Manne
2001; Balasubramonian et al. 2000; Buyuktosunoglu et al. 2000; Dhodhapkar
and Smith 2002; Dropsho et al. 2002; Folegnani and Gonzlez 2001; Manne et al.
1998; Ponomarev et al. 2001]. Sherwood et al. [2003] performed a brief evalu-
ation of processor energy adaptations at the phase granularity. They focus on

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 27

providing energy savings without significant performance loss. Our processor
algorithm is based on a similar approach, but also allows explicit performance
(slack) tradeoffs and we show how to integrate it with a memory-adaptation
algorithm. Huang et al. [2000] propose DEETM, which adapts at the granu-
larity of several milliseconds. More recently, they developed an algorithm that
adapts at the temporal granularity of subroutines [Huang et al. 2003b]. It uses
either offline or online profile information to select the best adaptations for the
subroutines for given target slack. Dhodapkar et al. [Dhodhapkar and Smith
2002] and Balasubramonian et al. [2000] propose processor adaptation meth-
ods based on variable-sized time intervals. It would be interesting to evaluate
subroutine- versus phase-based adaptations, as well as the impact of variable-
sized intervals for joint adaptation; however, this is outside the scope of our
work.

Dropsho et al. [2002] propose an algorithm to control multiple adaptive re-
sources in the processor and cache. The algorithm controls each structure inde-
pendently and makes greedy control decisions based solely on the structure’s lo-
cal information. For individual adaptations (specifically caches), the algorithm
avoids pathological performance degradations and shares similarities with our
performance guarantee algorithm. However, that algorithm does not factor in
the interaction and coupled effects between multiple resource adaptations when
making control decisions. That work concludes that an important piece of future
work is to develop techniques that can capture such global effects and bound the
total performance loss. Our joint algorithm considers the interaction between
different components and makes decisions based on such global information.

Our processor algorithm is derived from the algorithm developed by Hughes
et al. [2001] for real-time multimedia applications. That algorithm adapts at
the granularity of each application frame—it picks the lowest energy configura-
tion that will meet the real-time deadline of the frame. Hughes et al. show how
to use specific properties of multimedia applications to predict the energy and
execution time of the next frame for each architecture configuration. To make
the prediction, they (1) initially profile a frame for each architecture configu-
ration, determining the frame’s average IPC and energy per instruction, and
(2) before each subsequent frame’s execution, predict the instruction count for
that frame using simple heuristics. With the above information, they can pick
the architecture configuration that uses minimal energy and meets the dead-
line. Our algorithm is also profile based, but we use phases as the granularity
of adaptation (instead of frames) and do not need instruction count predictors
(because we can directly predict execution time and energy from a profile of a
phase). In addition, our algorithm aims to provide a performance guarantee.

8.3 Phase Characterizations

Underlying our work is the requirement for adequate phase-characterization
algorithms. We have used the basic block vector (BBV)-based algorithm
by Sherwood et al. [2003]. Recently, Isci et al. compared the BBV-based
classification method with a performance-monitoring counter (PMC)-based
classification method for characterizing power for both SPEC and non-SPEC

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 28 • X. Li et al.

benchmarks [Isci and Martonosi 2006]. They conclude that the BBV-based
method can lead to phase-characterizations where there is some variability
in the power usage of the intervals of some phases, particularly for non-SPEC
benchmarks. The PMC based method is more accurate for power. Our algo-
rithm can make use of any phase-characterization algorithm, including future
improvements to such algorithms. For the applications and systems used in our
experiments, we found the BBV-based method to be adequate. We also note that
for our purpose, accuracy of performance behavior is arguably more important
than accuracy of power, because the former affects the performance guarantee
whereas the latter affects the extent of energy savings.

9. CONCLUSIONS AND FUTURE WORK

There has been an explosion of research on energy-driven adaptations for dif-
ferent hardware components for general-purpose applications, but little work
on controlling the adaptations of multiple interacting components. To reap the
energy benefits of the various proposed adaptations on real systems, it is neces-
sary to determine how to use per-component adaptation algorithms in concert
with each other, with bounded performance loss. This paper has taken the first
step toward that goal.

We develop a cross-component adaptation control algorithm for processor
and memory adaptations. The algorithm assumes a specified target slowdown
and seeks to minimize the total processor + memory energy without exceeding
this slowdown.

Rather than develop a new algorithm from scratch, we leverage the substan-
tial work in per-component algorithms. We modify a current processor and a
memory algorithm so they satisfy the properties of performance guarantee and
composability. These properties enable determining an optimal slack allocation
for the per-component algorithms, such that these algorithms are able to work
independently and yet are able to minimize the total energy of the two compo-
nents while meeting the target performance constraint. The ability to use two
per-component algorithms independently is an important asset since proces-
sors and memories are provided by different vendors; a tight coupling between
the two would be difficult, in practice.

Our results show that joint adaptation of both components provides signif-
icantly more energy savings than adapting either component alone. Further,
our results illustrate the importance of distributing the targeted slack among
the processor and memory in an intelligent and application-specific way. Our
results also clearly demonstrate that our framework is able to maintain the
required performance constraint.

Although our focus is not on the per-component algorithms per se, it is worth
noting that this work also advances the state-of-the-art in processor adaptation
for energy. Most previous processor algorithms for general-purpose applications
focused on saving energy without “much” performance loss, but they normally
do not try to bound the performance loss. We show how to trade off a targeted
amount of performance to save energy. To do so, we assume an application
consists of phases that repeat often and an algorithm that can classify phase

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 29

intervals with stable execution time and energy. There is much recent and con-
current work that exploits similar assumptions and also work developing in-
creasingly accurate phase classification and detection algorithms. We can easily
incorporate future improvements in such algorithms within our framework.

There are several avenues for future work. First, currently, we assume a
user-defined slack and seek to minimize energy while staying within this slack.
We would like to explore explicit performance–energy tradeoffs, and the in-
volvement of the operating system in determining application-specific trade-
offs that can maximize the utility of the entire system. Second, as mentioned
earlier, it would be interesting to study alternative time granularities for adap-
tation, e.g., subroutines as in [Huang et al. 2003b]. Third, we would like to
extend this work to other component adaptations (e.g., disk) and to other adap-
tations in the processor (e.g., dynamic voltage scaling or DVS and other ar-
chitecture adaptations).4 Fourth, we would like to use a full system simu-
lator modeling a chip multiprocessor (CMP) to evaluate multithreaded com-
mercial workloads such as databases, to explore if a phase-based approach
can be extended to such applications and systems. We would also like to ex-
plore alternate phase-characterization strategies that can classify phases more
accurately for a broader class of single-threaded applications (e.g., Isci and
Martonosi [2006]). Finally, we would like to confirm that operating system ef-
fects, such as context switches and interrupts, are properly handled with our
algorithms.

Although there are many open questions, most of these must also be re-
solved for per-component adaptation (e.g., we are not aware of performance-
guaranteed processor or memory adaptation on CMPs). Overcoming all the lim-
itations of per-component adaptations is outside the scope of this paper. Rather,
our goal has been to provide a framework that will enable per-component al-
gorithms to be used in a cross-component context. We hope that this work will
guide the developers of future per-component algorithms in a direction that will
make those algorithms amenable to cross-component adaptation.

REFERENCES

ALBONESI, D. H. 1999. Selective cache ways: On-demand cache resource allocation. In Proc. of the
32nd Annual Intl. Symp. on Microarchitecture.

BAHAR, R. I. AND MANNE, S. 2001. Power and energy reduction via pipeline balancing. In Proc. of
the 28th Annual Intl. Symp. on Comp. Architecture.

BALASUBRAMONIAN, R. ET AL. 2000. Memory hierarchy reconfiguration for energy and performance

in general-purpose processor architectures. In Proc. of the 33rd Annual Intl. Symp. on Microar-
chitecture.

BROOKS, D. AND MARTONOSI, M. 1999. Dynamically exploiting narrow width operands to improve

processor power and performance. In Proc. of the 5th Intl. Symp. on High Performance Comp.
Architecture.

BROOKS, D. ET AL. 2000. Wattch: A framework for architectural-level power analysis and opti-

mizations. In Proc. of the 27th Annual Intl. Symp. on Comp. Architecture.

BUYUKTOSUNOGLU, A. ET AL. 2000. An adaptive issue queue for reduced power at high performance.

In Proc. of the Workshop on Power-Aware Computer Systems.

4We chose to study architecture adaptations over DVS in this work because it is becoming difficult

to scale voltage down further. Nevertheless, it is possible to integrate DVS into our framework.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Article 14 / 30 • X. Li et al.

CARRERA, E. V. ET AL. 2003. Conserving disk energy in network servers. In Proceedings of the 17th
International Conference on Supercomputing.

CHO, Y. AND CHANG, N. 2004. Memory-aware energy-optimal frequency assignment for dy-

namic supply voltage scaling. In Proc. of the Intl. Symposium on Low Power Electronics and
Design.

DELALUZ, V. ET AL. 2000. Energy-oriented compiler optimizations for partitioned memory archi-

tectures. In International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems.

DELALUZ, V. ET AL. 2001. Hardware and software techniques for controlling dram power modes.

IEEE Transactions on Computers.

DELALUZ, V. ET AL. 2002a. Automatic data migration for reducing energy consumption in multi-

bank memory systems. In Design Automation Conference.

DELALUZ, V. ET AL. 2002b. Scheduler-based dram energy management. In Design Automation
Conference.

DHODHAPKAR, A. AND SMITH, J. E. 2002. Managing multi-configuration hardware via dynamic

working set analysis. In Proc. of the 29th Annual Intl. Symp. on Comp. Architecture.

DROPSHO, S. ET AL. 2002. Integrating adaptive on-chip storage structures for reduced dynamic

power. In International Conference on Parallel Architectures and Compilation Techniques.

FAN, X. ET AL. 2003. Synergy between power-aware memory systems and processor voltage scal-

ing. In Proc. of the Workshop on Power-Aware Computer Systems.

FELTER, W., RAJAMANI, K., KELLER, T., AND RUSU, C. 2005. A performance-conserving approach

for reducing peak power consumption in server systems. In Proc. of the 2005 Intl Conf. on
Supercomputing.

FLINN, J. AND SATYANARAYANAN, M. 1999. Energy-aware adaptation for mobile applications. In

Proceedings of the Symposium on Operating Systems Principles.

FOLEGNANI, D. AND GONZLEZ, A. 2001. Energy-effective issue logic. In Proc. of the 28th Annual Intl.
Symp. on Comp. Architecture.

GOVIL, K., CHAN, E., AND WASSERMAN, H. 1995. Comparing algorithms for dynamic speed-setting

of a low-power CPU. In Proc. of the 1st Intl. Conf. on Mobile Computing and Networking.

GURUMURTHI, S. ET AL. 2003. Drpm: Dynamic speed control for power management in server class

disks. In Proc. of the 30th Annual Intl. Symp. on Comp. Architecture.

HUANG, M. ET AL. 2000. A framework for dynamic energy efficiency and temperature manage-

ment. In Proc. of the 33rd Annual Intl. Symp. on Microarchitecture.

HUANG, H., PILLAI, P., AND SHIN, K. 2003a. Design and implementation of power-aware virtual

memory. In USENIX Conference.

HUANG, M. C. ET AL. 2003b. Positional processor adaptation: Application to energy reduction. In

Proc. of the 30th Annual Intl. Symp. on Comp. Architecture.

HUGHES, C. J. AND ADVE, S. V. 2004. A formal approach to frequent energy adaptations for multi-

media applications. In Proc. of the 31th Annual Intl. Symp. on Comp. Architecture.

HUGHES, C. J. ET AL. 2001. Saving energy with architectural and frequency adaptations for mul-

timedia applications. In Proc. of the 34th Annual Intl. Symp. on Microarchitecture.

HUGHES, C. J. ET AL. 2002. RSIM: Simulating shared-memory multiprocessors with ILP proces-

sors. IEEE Computer.

ISCI, C. AND MARTONOSI, M. 2006. Phase characterization for power: Evaluating control-flow-based

and event-counter-based techniques . In Proc. of the 12th Intl. Symp. on High Performance Comp.
Architecture.

KRAVETS, R. AND KRISHNAN, P. 1998. Power management techniques for mobile communication. In

MobiCom. 157–168.

LEBECK, A. R. ET AL. 2000. Power aware page allocation. In Proc. of the 8th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems.

LEFURGY, C. ET AL. 2003. Energy management for commercial servers. IEEE Computer 36, 12

(Dec.), 39–48.

LI, X. ET AL. 2004. Performance directed energy management for main memory and disk. In

Proc. of the 12th Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

Cross-Component Energy Management • Article 14 / 31

LU, Z. ET AL. 2002. Control-theoretic dynamic voltage and frequency scaling for multimedia work-

loads. In Proc. of the 2002 International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems.

MANNE, S. ET AL. 1998. Pipeline gating: Speculation control for energy reduction. In Proc. of the
25th Annual Intl. Symp. on Comp. Architecture.

MARO, R. ET AL. 2000. Dynamically reconfiguring processor resources to reduce power consump-

tion in high-performance processors. In Proc. of the Workshop on Power-Aware Computer Systems.

PONOMAREV, D. ET AL. 2001. Reducing power requirements of instruction scheduling through dy-

namic allocation of multiple datapath resources. In Proc. of the 34th Annual Intl. Symp. on
Microarchitecture.

RAMBUS. 1999. Rdram. http://www.rambus.com.

SACHS, D., ADVE, S., AND JONES, D. 2003. Cross-layer adaptive video coding to reduce energy on

general-purpose processors. In Proc. Intl. Conf. Image Processing (ICIP).
SASANKA, R. ET AL. 2002. Joint local and global hardware adaptations for energy. In Proc. of the

10th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems.

SHERWOOD, T. ET AL. 2002. Automatically characterizing large scale program behavior. In Proc. of
the 10th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems.

SHERWOOD, T. ET AL. 2003. Phase tracking and prediction. In Proc. of the 30th Annual Intl. Symp.
on Comp. Architecture.

VARDHAN, V. ET AL. 2005. Integrating fine-grained application adaptation with global adaptation

for saving energy. In Proceedings of the 2nd International Workshop on Power-Aware Real-Time
Computing (PARC). Extended version submitted to the International Journal of Embedded Sys-

tems, special issue on “Low Power Real-Time Embedded Computing”.

YUAN, W. ET AL. 2003. Design and evaluation of a cross-layer adaptation framework for mobile

multimedia systems. In Proc. SPIE Conf. on Multimedia Computing and Networking (MMCN).

Received March 2006; revised November 2006; accepted November 2006

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 14, Publication date: September 2007.

